kaggle house price

时间:2022-07-25 07:34:22

kaggle 竞赛入门

  • 对于刚刚入门机器学习的的同学来说,kaggle竞赛通常是他们学习和跟其他的全世界范围内的参赛选手切磋的一个大的平台,这个平台上提供了一些入门的竞赛,可以供刚入门的同学一展拳脚

  • 本文针对房价预测的这个竞赛展开,从EDA,特征工程,到模型调参开始讲述一些竞赛中的小的trick,希望对大家有些帮助,本人基础一般,如果有贻笑大方的地方,可以随意拍砖

from IPython.display import HTML
from IPython.display import Image HTML('''<script>
code_show=true;
function code_toggle() {
if (code_show){
$('div.input').hide();
} else {
$('div.input').show();
}
code_show = !code_show
}
$( document ).ready(code_toggle);
</script>
<form action="javascript:code_toggle()"><input type="submit" value="Click here to toggle on/off the raw code."></form>''')

导入常用的数据分析以及模型的库

import pandas as pd
import numpy as np
  • 查看当前目录下的文件可以使用!ls
!ls
data_description.txt
data_description.zip
kaggle house price.ipynb
sample_submission.csv
stacking-house-prices-walkthrough-to-top-5.ipynb
test.csv
train.csv
train = pd.read_csv('train.csv')
test = pd.read_csv('test.csv')
train.head()
Id MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape LandContour Utilities ... PoolArea PoolQC Fence MiscFeature MiscVal MoSold YrSold SaleType SaleCondition SalePrice
0 1 60 RL 65.0 8450 Pave NaN Reg Lvl AllPub ... 0 NaN NaN NaN 0 2 2008 WD Normal 208500
1 2 20 RL 80.0 9600 Pave NaN Reg Lvl AllPub ... 0 NaN NaN NaN 0 5 2007 WD Normal 181500
2 3 60 RL 68.0 11250 Pave NaN IR1 Lvl AllPub ... 0 NaN NaN NaN 0 9 2008 WD Normal 223500
3 4 70 RL 60.0 9550 Pave NaN IR1 Lvl AllPub ... 0 NaN NaN NaN 0 2 2006 WD Abnorml 140000
4 5 60 RL 84.0 14260 Pave NaN IR1 Lvl AllPub ... 0 NaN NaN NaN 0 12 2008 WD Normal 250000

5 rows × 81 columns

train.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1460 entries, 0 to 1459
Data columns (total 81 columns):
Id 1460 non-null int64
MSSubClass 1460 non-null int64
MSZoning 1460 non-null object
LotFrontage 1201 non-null float64
LotArea 1460 non-null int64
Street 1460 non-null object
Alley 91 non-null object
LotShape 1460 non-null object
LandContour 1460 non-null object
Utilities 1460 non-null object
LotConfig 1460 non-null object
LandSlope 1460 non-null object
Neighborhood 1460 non-null object
Condition1 1460 non-null object
Condition2 1460 non-null object
BldgType 1460 non-null object
HouseStyle 1460 non-null object
OverallQual 1460 non-null int64
OverallCond 1460 non-null int64
YearBuilt 1460 non-null int64
YearRemodAdd 1460 non-null int64
RoofStyle 1460 non-null object
RoofMatl 1460 non-null object
Exterior1st 1460 non-null object
Exterior2nd 1460 non-null object
MasVnrType 1452 non-null object
MasVnrArea 1452 non-null float64
ExterQual 1460 non-null object
ExterCond 1460 non-null object
Foundation 1460 non-null object
BsmtQual 1423 non-null object
BsmtCond 1423 non-null object
BsmtExposure 1422 non-null object
BsmtFinType1 1423 non-null object
BsmtFinSF1 1460 non-null int64
BsmtFinType2 1422 non-null object
BsmtFinSF2 1460 non-null int64
BsmtUnfSF 1460 non-null int64
TotalBsmtSF 1460 non-null int64
Heating 1460 non-null object
HeatingQC 1460 non-null object
CentralAir 1460 non-null object
Electrical 1459 non-null object
1stFlrSF 1460 non-null int64
2ndFlrSF 1460 non-null int64
LowQualFinSF 1460 non-null int64
GrLivArea 1460 non-null int64
BsmtFullBath 1460 non-null int64
BsmtHalfBath 1460 non-null int64
FullBath 1460 non-null int64
HalfBath 1460 non-null int64
BedroomAbvGr 1460 non-null int64
KitchenAbvGr 1460 non-null int64
KitchenQual 1460 non-null object
TotRmsAbvGrd 1460 non-null int64
Functional 1460 non-null object
Fireplaces 1460 non-null int64
FireplaceQu 770 non-null object
GarageType 1379 non-null object
GarageYrBlt 1379 non-null float64
GarageFinish 1379 non-null object
GarageCars 1460 non-null int64
GarageArea 1460 non-null int64
GarageQual 1379 non-null object
GarageCond 1379 non-null object
PavedDrive 1460 non-null object
WoodDeckSF 1460 non-null int64
OpenPorchSF 1460 non-null int64
EnclosedPorch 1460 non-null int64
3SsnPorch 1460 non-null int64
ScreenPorch 1460 non-null int64
PoolArea 1460 non-null int64
PoolQC 7 non-null object
Fence 281 non-null object
MiscFeature 54 non-null object
MiscVal 1460 non-null int64
MoSold 1460 non-null int64
YrSold 1460 non-null int64
SaleType 1460 non-null object
SaleCondition 1460 non-null object
SalePrice 1460 non-null int64
dtypes: float64(3), int64(35), object(43)
memory usage: 924.0+ KB
print(train.shape)
print(test.shape)
(1460, 81)
(1459, 80)
  • 数据结构类似于波士顿房屋的价格数据,其中该数据集中有79个特征,来描述房屋,可以通过数据描述来查看对应字段的意义
  • 同时本文也将缺失值处理的方法进行阐述
  • PoolQC 7 non-null object
  • Fence 281 non-null object
  • MiscFeature 54 non-null object 以上三个特征缺失较为明显,后文将有对应的对缺失值处理的方法

数据处理

kaggle house price

  • 异常值通常是指在预期的值之外,至于如何处理异常值,怎么界定异常值,取决于个人和特定的问题
  • 对于异常值通常会在数据分布点之外,因此通常会让计算的结果和数据的分布
  • 以下图为例

kaggle house price

with open ('data_description.txt','r') as f:
for i in f.readlines():
print(i)
break
MSSubClass: Identifies the type of dwelling involved in the sale.

Data fields

Here's a brief version of what you'll find in the data description file.

  • SalePrice - the property's sale price in dollars. This is the target variable that you're trying to predict.

  • MSSubClass: The building class

  • MSZoning: The general zoning classification

  • LotFrontage: Linear feet of street connected to property

  • LotArea: Lot size in square feet

  • Street: Type of road access

  • Alley: Type of alley access

  • LotShape: General shape of property

  • LandContour: Flatness of the property

  • Utilities: Type of utilities available

  • LotConfig: Lot configuration

  • LandSlope: Slope of property

  • Neighborhood: Physical locations within Ames city limits

  • Condition1: Proximity to main road or railroad

  • Condition2: Proximity to main road or railroad (if a second is present)

  • BldgType: Type of dwelling

  • HouseStyle: Style of dwelling

  • OverallQual: Overall material and finish quality

  • OverallCond: Overall condition rating

  • YearBuilt: Original construction date

  • YearRemodAdd: Remodel date

  • RoofStyle: Type of roof

  • RoofMatl: Roof material

  • Exterior1st: Exterior covering on house

  • Exterior2nd: Exterior covering on house (if more than one material)

  • MasVnrType: Masonry veneer type

  • MasVnrArea: Masonry veneer area in square feet

  • ExterQual: Exterior material quality

  • ExterCond: Present condition of the material on the exterior

  • Foundation: Type of foundation

  • BsmtQual: Height of the basement

  • BsmtCond: General condition of the basement

  • BsmtExposure: Walkout or garden level basement walls

  • BsmtFinType1: Quality of basement finished area

  • BsmtFinSF1: Type 1 finished square feet

  • BsmtFinType2: Quality of second finished area (if present)

  • BsmtFinSF2: Type 2 finished square feet

  • BsmtUnfSF: Unfinished square feet of basement area

  • TotalBsmtSF: Total square feet of basement area

  • Heating: Type of heating

  • HeatingQC: Heating quality and condition

  • CentralAir: Central air conditioning

  • Electrical: Electrical system

  • 1stFlrSF: First Floor square feet

  • 2ndFlrSF: Second floor square feet

  • LowQualFinSF: Low quality finished square feet (all floors)

  • GrLivArea: Above grade (ground) living area square feet

  • BsmtFullBath: Basement full bathrooms

  • BsmtHalfBath: Basement half bathrooms

  • FullBath: Full bathrooms above grade

  • HalfBath: Half baths above grade

  • Bedroom: Number of bedrooms above basement level

  • Kitchen: Number of kitchens

  • KitchenQual: Kitchen quality

  • TotRmsAbvGrd: Total rooms above grade (does not include bathrooms)

  • Functional: Home functionality rating

  • Fireplaces: Number of fireplaces

  • FireplaceQu: Fireplace quality

  • GarageType: Garage location

  • GarageYrBlt: Year garage was built

  • GarageFinish: Interior finish of the garage

  • GarageCars: Size of garage in car capacity

  • GarageArea: Size of garage in square feet

  • GarageQual: Garage quality

  • GarageCond: Garage condition

  • PavedDrive: Paved driveway

  • WoodDeckSF: Wood deck area in square feet

  • OpenPorchSF: Open porch area in square feet

  • EnclosedPorch: Enclosed porch area in square feet

  • 3SsnPorch: Three season porch area in square feet

  • ScreenPorch: Screen porch area in square feet

  • PoolArea: Pool area in square feet

  • PoolQC: Pool quality

  • Fence: Fence quality

  • MiscFeature: Miscellaneous feature not covered in other categories

  • MiscVal: $Value of miscellaneous feature

  • MoSold: Month Sold

  • YrSold: Year Sold

  • SaleType: Type of sale

  • SaleCondition: Condition of sale

  • 首先看这个特征 GrLivArea: Above grade (ground) living area square feet,是指居住面积平方英尺

去除异常值
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
sns.set(style='white', context='notebook', palette='deep')
plt.subplots(figsize=(15,8))
plt.subplot(1,2,1)
g= sns.regplot(x=train['GrLivArea'],y= train['SalePrice'],fit_reg=False).set_title('Before')
plt.subplot(1,2,2)
train= train.drop(train[train['GrLivArea']>4000].index)
g=sns.regplot(x=train['GrLivArea'],y=train['SalePrice'],fit_reg=False).set_title('After')

kaggle house price

  • 从以上图中可以发现,居住面积大于4000的样本总共有4个,且这个四个属于严重的偏离分布
处理缺失值
  • 缺失值可能是由于人工输入错误,机器误差等问题导致的
  • 有些例子中的缺失值可以使用0进行填充,前提是需要知道该特征代表的意义,缺失即代表0
  • 实际情况中,填充0并不总是最好的办法,而且针对不同的算法,对于缺失值处理的能力不同,本文需要使用多种算法进行拟合房价,因此如何正确处理缺失值呢,一般有两种方法:
    • 直接删掉带有缺失值的列
    • 填充缺失值
# 首先先把训练数据与测试数据的长度保持,以备后用
ntrain = train.shape[0]
ntest = test.shape[0] # 保持训练集的目标值数据即 SalePrice
y_train = train.SalePrice.values
all_data = pd.concat((train,test)).reset_index(drop=True)
all_data.drop(['SalePrice'],axis=1,inplace=True)
all_data.drop(['Id'],axis=1,inplace=True)
print('all data shape:{}'.format(all_data.shape))
all data shape:(2915, 79)

/Users/aihuishou/anaconda3/envs/work/lib/python3.6/site-packages/ipykernel_launcher.py:7: FutureWarning: Sorting because non-concatenation axis is not aligned. A future version
of pandas will change to not sort by default. To accept the future behavior, pass 'sort=False'. To retain the current behavior and silence the warning, pass 'sort=True'. import sys
all_data_na = all_data.isnull().sum()
all_data_na.sort_values(ascending=False)
PoolQC           2907
MiscFeature 2810
Alley 2717
Fence 2345
FireplaceQu 1420
LotFrontage 486
GarageFinish 159
GarageQual 159
GarageYrBlt 159
GarageCond 159
GarageType 157
BsmtCond 82
BsmtExposure 82
BsmtQual 81
BsmtFinType2 80
BsmtFinType1 79
MasVnrType 24
MasVnrArea 23
MSZoning 4
BsmtHalfBath 2
Utilities 2
Functional 2
BsmtFullBath 2
Electrical 1
Exterior2nd 1
KitchenQual 1
GarageCars 1
Exterior1st 1
GarageArea 1
TotalBsmtSF 1
...
GrLivArea 0
YearRemodAdd 0
YearBuilt 0
WoodDeckSF 0
TotRmsAbvGrd 0
Street 0
ScreenPorch 0
SaleCondition 0
RoofStyle 0
RoofMatl 0
PoolArea 0
PavedDrive 0
OverallQual 0
OverallCond 0
OpenPorchSF 0
Neighborhood 0
MoSold 0
MiscVal 0
MSSubClass 0
LowQualFinSF 0
LotShape 0
LotConfig 0
LotArea 0
LandSlope 0
LandContour 0
KitchenAbvGr 0
HouseStyle 0
HeatingQC 0
Heating 0
1stFlrSF 0
Length: 79, dtype: int64
all_data_na = all_data_na.drop(all_data_na[all_data_na==0].index).sort_values(ascending=False)
plt.subplots(figsize=(12,6))
all_data_na.plot(kind='Bar')
<matplotlib.axes._subplots.AxesSubplot at 0x128568710>

kaggle house price

!pip install xgboost
Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
Requirement already satisfied: xgboost in /Users/aihuishou/anaconda3/envs/work/lib/python3.6/site-packages (0.90)
Requirement already satisfied: numpy in /Users/aihuishou/anaconda3/envs/work/lib/python3.6/site-packages (from xgboost) (1.16.2)
Requirement already satisfied: scipy in /Users/aihuishou/anaconda3/envs/work/lib/python3.6/site-packages (from xgboost) (1.2.1)
train[all_data_na.index[:25]].info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1456 entries, 0 to 1459
Data columns (total 25 columns):
PoolQC 5 non-null object
MiscFeature 54 non-null object
Alley 91 non-null object
Fence 280 non-null object
FireplaceQu 766 non-null object
LotFrontage 1197 non-null float64
GarageQual 1375 non-null object
GarageCond 1375 non-null object
GarageFinish 1375 non-null object
GarageYrBlt 1375 non-null float64
GarageType 1375 non-null object
BsmtExposure 1418 non-null object
BsmtCond 1419 non-null object
BsmtQual 1419 non-null object
BsmtFinType2 1418 non-null object
BsmtFinType1 1419 non-null object
MasVnrType 1448 non-null object
MasVnrArea 1448 non-null float64
MSZoning 1456 non-null object
BsmtFullBath 1456 non-null int64
BsmtHalfBath 1456 non-null int64
Utilities 1456 non-null object
Functional 1456 non-null object
Electrical 1455 non-null object
BsmtUnfSF 1456 non-null int64
dtypes: float64(3), int64(3), object(19)
memory usage: 295.8+ KB
  • for category feature we,fill these missing values with "None"
  • for float feature and the number of missing values seemingly much larger ,we fill these missing values with median of the feature
  • for float feature and the number of missing values smaller, we will fill these missing values with mode
for col in ("PoolQC", 'MiscFeature', 'Alley', 'Fence', 'FireplaceQu', 'GarageQual', 'GarageCond',
'GarageFinish', 'GarageType','BsmtExposure','BsmtCond','BsmtQual','BsmtFinType2','BsmtFinType1',
'MasVnrType'):
all_data[col] = all_data[col].fillna('None') print('处理object类型缺失值,根据特征的描述,特征缺失值补充为"None",已完成') for col in ("GarageYrBlt", "GarageArea", "GarageCars", "BsmtFinSF1",
"BsmtFinSF2", "BsmtUnfSF", "TotalBsmtSF", "MasVnrArea",
"BsmtFullBath", "BsmtHalfBath"):
all_data[col] = all_data[col].fillna(0) print('处理数值类型的缺失值,根据特征的描述,选择特征缺失值补充为0,已完成') all_data['MSZoning'] = all_data['MSZoning'].fillna(all_data['MSZoning'].mode()[0])
all_data['Electrical'] = all_data['Electrical'].fillna(all_data['Electrical'].mode()[0])
all_data['KitchenQual'] = all_data['KitchenQual'].fillna(all_data['KitchenQual'].mode()[0])
all_data['Exterior1st'] = all_data['Exterior1st'].fillna(all_data['Exterior1st'].mode()[0])
all_data['Exterior2nd'] = all_data['Exterior2nd'].fillna(all_data['Exterior2nd'].mode()[0])
all_data['SaleType'] = all_data['SaleType'].fillna(all_data['SaleType'].mode()[0])
all_data["Functional"] = all_data["Functional"].fillna(all_data['Functional'].mode()[0]) print('处理缺失值较少的缺失值,数据类型为数值,填充缺失值为该特征的众数,已完成') all_data_na = all_data.isnull().sum()
print("Features with missing values: ", all_data_na.drop(all_data_na[all_data_na == 0].index))
处理object类型缺失值,根据特征的描述,特征缺失值补充为"None",已完成
处理数值类型的缺失值,根据特征的描述,选择特征缺失值补充为0,已完成
处理缺失值较少的缺失值,数据类型为数值,填充缺失值为该特征的众数,已完成
Features with missing values: LotFrontage 486
Utilities 2
dtype: int64
all_data.groupby(["Neighborhood"])['LotFrontage'].sum()
Neighborhood
Blmngtn 938.0
Blueste 273.0
BrDale 645.0
BrkSide 5300.0
ClearCr 1763.0
CollgCr 15694.0
Crawfor 5806.0
Edwards 11467.0
Gilbert 8237.0
IDOTRR 5415.0
MeadowV 845.0
Mitchel 6763.0
NAmes 28204.0
NPkVill 591.0
NWAmes 6929.0
NoRidge 4684.0
NridgHt 13722.0
OldTown 14147.0
SWISU 2599.0
Sawyer 7306.0
SawyerW 7491.0
Somerst 10457.0
StoneBr 2860.0
Timber 4626.0
Veenker 1152.0
Name: LotFrontage, dtype: float64
all_data['LotFrontage']=all_data.groupby("Neighborhood")["LotFrontage"].transform(
lambda x: x.fillna(x.median()))
分析 Utilities
plt.subplots(figsize=(12,5))
plt.subplot(1,2,1)
g=sns.countplot(x='Utilities',data=train).set_title('Utilities_train')
plt.subplot(1,2,2)
g=sns.countplot(x='Utilities',data=test).set_title('Utilities_test')

kaggle house price

train['Utilities'].value_counts()
AllPub    1455
NoSeWa 1
Name: Utilities, dtype: int64
test['Utilities'].value_counts()
AllPub    1457
Name: Utilities, dtype: int64
all_data = all_data.drop(['Utilities'], axis=1)
all_data_na = all_data.isnull().sum()
print("Features with missing values: ", len(all_data_na.drop(all_data_na[all_data_na == 0].index)))
Features with missing values:  0

Exploratory Data Analysis

Correlation matrix
  • 异常值与缺失值已经处理完毕,进一步需要特征之间与特征与目标值之间的关系,相关系数矩阵就是提供了反应特征与目标值之间关系的一个参考
corr = train.corr()
plt.subplots(figsize=(30,30))
cmap = sns.diverging_palette(150, 250, as_cmap=True)
sns.heatmap(corr, cmap="RdYlBu", vmax=1, vmin=-0.6, center=0.2, square=True, linewidths=0, cbar_kws={"shrink": .5}, annot = True)
<matplotlib.axes._subplots.AxesSubplot at 0x12901bc18>

kaggle house price

  • for raw highly influencing factors on SalePrice, we could do feature engineering

  • 从相关系数矩阵中,我们挑选了一些跟最终售价相关性较高的做进一步的分析

  • 主要的影响因素有以下几个:

  1. OverallQual Overall material and finish quality 整体的物料以及完成质量
  2. GrLivArea Above grade (ground) living area square feet 地面以上的居住面积 平方英尺
  3. GarageCars Size of garage in car capacity 停车场的大小,可以放几辆车
  4. GarageArea Size of garage in square feet 停车场的面积大小
  5. TotalBsmtSF Total square feet of basement area 地下室的面积 平方英尺
  6. 1stFlrSF First Floor square feet 一楼的面积 平方英尺
  7. FullBath Full bathrooms above grade 地上卫生间
  8. TotRmsAbvGrd Total rooms above grade (does not include bathrooms) 地上去掉卫生间的房屋数
  9. Fireplaces 壁炉数量
  10. MasVnrArea Masonry veneer area in square feet 粗略可以理解为石灰结构的建筑面积
  11. BsmtFinSF1 Quality of basement finished area Type 1 finished square feet地下室的完成面积
  12. LotFrontage Linear feet of street connected to property 距离街道的距离
  13. WoodDeckSF Wood deck area in square feet 木质结构的建筑面积
  14. OpenPorchSF Open porch area in square feet 开放式门廊的面积
  15. 2ndFlrSF Second floor square feet 二楼的面积
# Quadratic
all_data["OverallQual-2"] = all_data["OverallQual"] ** 2
all_data["GrLivArea-2"] = all_data["GrLivArea"] ** 2
all_data["GarageCars-2"] = all_data["GarageCars"] ** 2
all_data["GarageArea-2"] = all_data["GarageArea"] ** 2
all_data["TotalBsmtSF-2"] = all_data["TotalBsmtSF"] ** 2
all_data["1stFlrSF-2"] = all_data["1stFlrSF"] ** 2
all_data["FullBath-2"] = all_data["FullBath"] ** 2
all_data["TotRmsAbvGrd-2"] = all_data["TotRmsAbvGrd"] ** 2
all_data["Fireplaces-2"] = all_data["Fireplaces"] ** 2
all_data["MasVnrArea-2"] = all_data["MasVnrArea"] ** 2
all_data["BsmtFinSF1-2"] = all_data["BsmtFinSF1"] ** 2
all_data["LotFrontage-2"] = all_data["LotFrontage"] ** 2
all_data["WoodDeckSF-2"] = all_data["WoodDeckSF"] ** 2
all_data["OpenPorchSF-2"] = all_data["OpenPorchSF"] ** 2
all_data["2ndFlrSF-2"] = all_data["2ndFlrSF"] ** 2
print("Quadratics done!...") # Cubic
all_data["OverallQual-23"] = all_data["OverallQual"] ** 3
all_data["GrLivArea-3"] = all_data["GrLivArea"] ** 3
all_data["GarageCars-3"] = all_data["GarageCars"] **3
all_data["GarageArea-3"] = all_data["GarageArea"] ** 3
all_data["TotalBsmtSF-3"] = all_data["TotalBsmtSF"] ** 3
all_data["1stFlrSF-3"] = all_data["1stFlrSF"] ** 3
all_data["FullBath-3"] = all_data["FullBath"] ** 3
all_data["TotRmsAbvGrd-3"] = all_data["TotRmsAbvGrd"] ** 3
all_data["Fireplaces-3"] = all_data["Fireplaces"] ** 3
all_data["MasVnrArea-3"] = all_data["MasVnrArea"] ** 3
all_data["BsmtFinSF1-3"] = all_data["BsmtFinSF1"] ** 3
all_data["LotFrontage-3"] = all_data["LotFrontage"] ** 3
all_data["WoodDeckSF-3"] = all_data["WoodDeckSF"] ** 3
all_data["OpenPorchSF-3"]=all_data["OpenPorchSF"] ** 3
all_data["2ndFlrSF-3"]= all_data["2ndFlrSF"] ** 3
print("Quadratics done!...") # Square Root
all_data["OverallQual-Sq"] = np.sqrt(all_data["OverallQual"])
all_data["GrLivArea-Sq"] = np.sqrt(all_data["GrLivArea"])
all_data["GarageCars-Sq"] = np.sqrt(all_data["GarageCars"])
all_data["GarageArea-Sq"] = np.sqrt(all_data["GarageArea"])
all_data["TotalBsmtSF-Sq"] = np.sqrt(all_data["TotalBsmtSF"])
all_data["1stFlrSF-Sq"] = np.sqrt(all_data["1stFlrSF"])
all_data["FullBath-Sq"] = np.sqrt(all_data["FullBath"])
all_data["TotRmsAbvGrd-Sq"] = np.sqrt(all_data["TotRmsAbvGrd"])
all_data["Fireplaces-Sq"] = np.sqrt(all_data["Fireplaces"])
all_data["MasVnrArea-Sq"] = np.sqrt(all_data["MasVnrArea"])
all_data["BsmtFinSF1-Sq"] = np.sqrt(all_data["BsmtFinSF1"])
all_data["LotFrontage-Sq"] = np.sqrt(all_data["LotFrontage"])
all_data["WoodDeckSF-Sq"] = np.sqrt(all_data["WoodDeckSF"])
all_data["OpenPorchSF-Sq"] = np.sqrt(all_data["OpenPorchSF"])
all_data["2ndFlrSF-Sq"] = np.sqrt(all_data["2ndFlrSF"])
print("Roots done!...")
Quadratics done!...
Quadratics done!...
Roots done!...
BsmtQual
train['BsmtQual'].value_counts()
TA    649
Gd 618
Ex 117
Fa 35
Name: BsmtQual, dtype: int64
train.groupby(['BsmtQual'])['SalePrice'].mean()
"""
BsmtQual: Evaluates the height of the basement Ex Excellent (100+ inches)
Gd Good (90-99 inches)
TA Typical (80-89 inches)
Fa Fair (70-79 inches)
Po Poor (<70 inches
NA No Basement
"""
'\nBsmtQual: Evaluates the height of the basement\n\n       Ex\tExcellent (100+ inches)\t\n       Gd\tGood (90-99 inches)\n       TA\tTypical (80-89 inches)\n       Fa\tFair (70-79 inches)\n       Po\tPoor (<70 inches\n       NA\tNo Basement\n'
plt.subplots(figsize=(20,6))
plt.subplot(1,3,1)# 箱形图
sns.boxplot(x='BsmtQual',y='SalePrice',data=train,order= ['Fa', 'TA', 'Gd', 'Ex']) plt.subplot(1,3,2) # x轴里的类别进行分类
sns.stripplot(x='BsmtQual',y='SalePrice',data=train,size=5,jitter=True,order= ['Fa', 'TA', 'Gd', 'Ex']) plt.subplot(1,3,3) # 柱状图
sns.barplot(x='BsmtQual',y='SalePrice',data=train,order= ['Fa', 'TA', 'Gd', 'Ex'],estimator=np.mean)
<matplotlib.axes._subplots.AxesSubplot at 0x1263d5e10>

kaggle house price

all_data['BsmtQual'] = all_data['BsmtQual'].map({"None":0, "Fa":1, "TA":2, "Gd":3, "Ex":4})
all_data['BsmtQual'].unique()
array([3, 2, 4, 0, 1])
all_data['BsmtQual'].value_counts()
2    1283
3 1209
4 254
1 88
0 81
Name: BsmtQual, dtype: int64
  • 很明显,该特征能够显著的影响销售价格,而且越高的的地下室,对应的价格也越高
  • typical and good 两个分部数量较大,占比较高
  • 可以将该特征的变量是有高低好坏之分的,也就是category 特征的顺序性,可以转化为数字(个人觉得意义不大)
BsmtCond
"""
BsmtCond: Evaluates the general condition of the basement Ex Excellent
Gd Good
TA Typical - slight dampness allowed
Fa Fair - dampness or some cracking or settling
Po Poor - Severe cracking, settling, or wetness
NA No Basement
"""
'\nBsmtCond: Evaluates the general condition of the basement\n\n       Ex\tExcellent\n       Gd\tGood\n       TA\tTypical - slight dampness allowed\n       Fa\tFair - dampness or some cracking or settling\n       Po\tPoor - Severe cracking, settling, or wetness\n       NA\tNo Basement\n'
plt.subplots(figsize=(20,5))
plt.subplot(1,3,1)
sns.boxplot(x='BsmtCond',y='SalePrice',data=train,order=['Po','Fa','TA','Gd'])
plt.subplot(1,3,2) sns.stripplot(x='BsmtCond',y='SalePrice',data=train,size=5,jitter=True,order= ['Po','Fa','TA','Gd']) plt.subplot(1,3,3) sns.barplot(x='BsmtCond',y='SalePrice',data=train,order=['Po','Fa','TA','Gd'])
<matplotlib.axes._subplots.AxesSubplot at 0x12ab8d6d8>

kaggle house price

train['BsmtCond'].value_counts()
TA    1307
Gd 65
Fa 45
Po 2
Name: BsmtCond, dtype: int64
  • 图二中的Typical样本数据占比较高,从barplot中可以看出该特征能够很明显的影响售出价格
  • 针对图一种的TA价格较为分散,价格分布离散
all_data['BsmtCond'] = all_data['BsmtCond'].map({"None":0, "Po":1, "Fa":2, "TA":3,"Gd":4, "Ex":5})
all_data['BsmtCond'].unique()
array([3, 4, 0, 2, 1])
BsmtExplosure
"""
BsmtExposure: Refers to walkout or garden level walls Gd Good Exposure
Av Average Exposure (split levels or foyers typically score average or above)
Mn Mimimum Exposure
No No Exposure
NA No Basement """
'\nBsmtExposure: Refers to walkout or garden level walls\n\n       Gd\tGood Exposure\n       Av\tAverage Exposure (split levels or foyers typically score average or above)\t\n       Mn\tMimimum Exposure\n       No\tNo Exposure\n       NA\tNo Basement\n\n'
plt.subplots(figsize=(20,5))
plt.subplot(1,3,1)
sns.boxplot(x='BsmtExposure',y='SalePrice',data=train,order=['No','Mn','Av','Gd'])
plt.subplot(1,3,2)
sns.stripplot(x='BsmtExposure',y='SalePrice',data=train,size=5,jitter=True,order= ['No','Mn','Av','Gd'])
plt.subplot(1,3,3)
sns.barplot(x='BsmtExposure',y='SalePrice',data=train,order=['No','Mn','Av','Gd'])
<matplotlib.axes._subplots.AxesSubplot at 0x12b8e4470>

kaggle house price

all_data['BsmtExposure'] = all_data['BsmtExposure'].map({"None":0, "No":1, "Mn":2, "Av":3,"Gd":4})
all_data['BsmtExposure'].unique()
array([1, 4, 2, 3, 0])
BsmtFinType1
"""
BsmtFinType1: Rating of basement finished area GLQ Good Living Quarters
ALQ Average Living Quarters
BLQ Below Average Living Quarters
Rec Average Rec Room
LwQ Low Quality
Unf Unfinshed
NA No Basement
"""
'\nBsmtFinType1: Rating of basement finished area\n\n       GLQ\tGood Living Quarters\n       ALQ\tAverage Living Quarters\n       BLQ\tBelow Average Living Quarters\t\n       Rec\tAverage Rec Room\n       LwQ\tLow Quality\n       Unf\tUnfinshed\n       NA\tNo Basement\n'
plt.subplots(figsize =(20, 5))

plt.subplot(1, 3, 1)
sns.boxplot(x="BsmtFinType1", y="SalePrice", data=train, order=["Unf", "LwQ", "Rec", "BLQ", "ALQ", "GLQ"]); plt.subplot(1, 3, 2)
sns.stripplot(x="BsmtFinType1", y="SalePrice", data=train, size = 5, jitter = True, order=["Unf", "LwQ", "Rec", "BLQ", "ALQ", "GLQ"]); plt.subplot(1, 3, 3)
sns.barplot(x="BsmtFinType1", y="SalePrice", data=train, order=["Unf", "LwQ", "Rec", "BLQ", "ALQ", "GLQ"]);

kaggle house price

  • 可以从图一中看出,很多没有装修完的地下室房屋的价格很高
  • 从图三中可以看到,这些category 不是按照顺序的提高,房屋的销售价提高与category的顺序没有必然关系
  • 因此将这个特征进行one-hot转化,可以使用pandas 中的get_dummy函数进行转化
all_data = pd.get_dummies(all_data, columns = ["BsmtFinType1"], prefix="BsmtFinType1")
all_data.head(3)
1stFlrSF 2ndFlrSF 3SsnPorch Alley BedroomAbvGr BldgType BsmtCond BsmtExposure BsmtFinSF1 BsmtFinSF2 ... WoodDeckSF-Sq OpenPorchSF-Sq 2ndFlrSF-Sq BsmtFinType1_ALQ BsmtFinType1_BLQ BsmtFinType1_GLQ BsmtFinType1_LwQ BsmtFinType1_None BsmtFinType1_Rec BsmtFinType1_Unf
0 856 854 0 None 3 1Fam 3 1 706.0 0.0 ... 0.000000 7.810250 29.223278 0 0 1 0 0 0 0
1 1262 0 0 None 3 1Fam 3 4 978.0 0.0 ... 17.262677 0.000000 0.000000 1 0 0 0 0 0 0
2 920 866 0 None 3 1Fam 3 2 486.0 0.0 ... 0.000000 6.480741 29.427878 0 0 1 0 0 0 0

3 rows × 129 columns

BsmtFinSF1
  • BsmtFinSF1: Type 1 finished square feet
from scipy.stats.stats import pearsonr
grid = plt.GridSpec(2,3,wspace=0.15,hspace=0.25)
# 创建画布指定子图将放置的网格的几何位置。 需要设置网格的行数和列数。 子图布局参数(例如,左,右等)可以选择性调整。
plt.subplots(figsize=(30,15))
plt.subplot(grid[0,0]) g = sns.regplot(x=train['BsmtFinSF1'], y=train['SalePrice'], fit_reg=False, label = "corr: %2f"%(pearsonr(train['BsmtFinSF1'], train['SalePrice'])[0]))
# g= sns.regplot(x=train['BsmtFinSF1'],y=train["SalePrice"],fit_reg==False,label= "Corr:%2f" %(pearsonr(train['BsmtFinType1'],train['SalePrice'])[0]))
g.legend(loc='best') plt.subplot(grid[0,1:]) sns.boxplot(x='Neighborhood',y='BsmtFinSF1',data=train) plt.subplot(grid[1,0])
sns.barplot(x='BldgType',y= 'BsmtFinSF1',data=train) plt.subplot(grid[1,1]) sns.barplot(x='HouseStyle',y ='BsmtFinSF1',data=train) plt.subplot(grid[1,2]) sns.barplot(x='LotShape',y='BsmtFinSF1',data=train)
<matplotlib.axes._subplots.AxesSubplot at 0x129034e10>

kaggle house price

  • 地下室完成面积对于销售价格来说影响很大,但是对于Neighborhood以及BldgType houseType LotShape 影响各异,这三个因素对于完成面积影响没有规律可循
  • 但是特征是连续的数值特质,因此考虑将其进行切割分组
bins = [-5,1000,2000,3000,float('inf')]
all_data['BsmtFinSF1_Band'] = pd.cut(all_data['BsmtFinSF1'], bins,labels=['1','2','3','4'])
all_data['BsmtFinSF1_Band'].unique()
all_data.drop('BsmtFinSF1',axis=1,inplace=True)
all_data = pd.get_dummies(all_data, columns = ["BsmtFinSF1_Band"], prefix="BsmtFinSF1")
all_data.head()

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
1stFlrSF 2ndFlrSF 3SsnPorch Alley BedroomAbvGr BldgType BsmtCond BsmtExposure BsmtFinSF2 BsmtFinType2 ... BsmtFinType1_BLQ BsmtFinType1_GLQ BsmtFinType1_LwQ BsmtFinType1_None BsmtFinType1_Rec BsmtFinType1_Unf BsmtFinSF1_1 BsmtFinSF1_2 BsmtFinSF1_3 BsmtFinSF1_4
0 856 854 0 None 3 1Fam 3 1 0.0 Unf ... 0 1 0 0 0 0 1 0 0 0
1 1262 0 0 None 3 1Fam 3 4 0.0 Unf ... 0 0 0 0 0 0 1 0 0 0
2 920 866 0 None 3 1Fam 3 2 0.0 Unf ... 0 1 0 0 0 0 1 0 0 0
3 961 756 0 None 3 1Fam 4 1 0.0 Unf ... 0 0 0 0 0 0 1 0 0 0
4 1145 1053 0 None 4 1Fam 3 3 0.0 Unf ... 0 1 0 0 0 0 1 0 0 0

5 rows × 132 columns

BsmtFinType2
"""
BsmtFinType2: Rating of basement finished area (if multiple types) GLQ Good Living Quarters
ALQ Average Living Quarters
BLQ Below Average Living Quarters
Rec Average Rec Room
LwQ Low Quality
Unf Unfinshed
NA No Basement """
'\nBsmtFinType2: Rating of basement finished area (if multiple types)\n\n       GLQ\tGood Living Quarters\n       ALQ\tAverage Living Quarters\n       BLQ\tBelow Average Living Quarters\t\n       Rec\tAverage Rec Room\n       LwQ\tLow Quality\n       Unf\tUnfinshed\n       NA\tNo Basement\n\n'
plt.subplots(figsize =(20, 5))

plt.subplot(1, 3, 1)
sns.boxplot(x="BsmtFinType2", y="SalePrice", data=train, order=["Unf", "LwQ", "Rec", "BLQ", "ALQ", "GLQ"]); plt.subplot(1, 3, 2)
sns.stripplot(x="BsmtFinType2", y="SalePrice", data=train, size = 5, jitter = True, order=["Unf", "LwQ", "Rec", "BLQ", "ALQ", "GLQ"]); plt.subplot(1, 3, 3)
sns.barplot(x="BsmtFinType2", y="SalePrice", data=train, order=["Unf", "LwQ", "Rec", "BLQ", "ALQ", "GLQ"]);

kaggle house price

  • 很多房子的第二个地下室没有装修完工,且价格分化很大
  • 第二个装修的地下室的装修好坏对于价格影响没有像之前的那样的顺序关系(图三)
  • 因此,需要将该特征转化为one-hot哑变量
all_data = pd.get_dummies(all_data, columns = ["BsmtFinType2"], prefix="BsmtFinType2")  # columns 参数要传入列表

all_data.head(3)
"""
columns : list-like, default None
Column names in the DataFrame to be encoded. If columns is None then all the columns with object or category dtype will be converted. """
'\ncolumns : list-like, default None\nColumn names in the DataFrame to be encoded. If columns is None then all the columns with object or category dtype will be converted.\n\n'
BsmtFinSF2
"""
BsmtFinSF2: Type 2 finished square feet
"""
grid = plt.GridSpec(2,3,wspace=0.15,hspace=0.25)
# 创建画布指定子图将放置的网格的几何位置。 需要设置网格的行数和列数。 子图布局参数(例如,左,右等)可以选择性调整。
plt.subplots(figsize=(30,15))
plt.subplot(grid[0,0]) g = sns.regplot(x=train['BsmtFinSF2'], y=train['SalePrice'], fit_reg=False, label = "corr: %2f"%(pearsonr(train['BsmtFinSF2'], train['SalePrice'])[0]))
# g= sns.regplot(x=train['BsmtFinSF1'],y=train["SalePrice"],fit_reg==False,label= "Corr:%2f" %(pearsonr(train['BsmtFinType1'],train['SalePrice'])[0]))
g.legend(loc='best') plt.subplot(grid[0,1:]) sns.boxplot(x='Neighborhood',y='BsmtFinSF2',data=train) plt.subplot(grid[1,0])
sns.barplot(x='BldgType',y= 'BsmtFinSF2',data=train) plt.subplot(grid[1,1]) sns.barplot(x='HouseStyle',y ='BsmtFinSF2',data=train) plt.subplot(grid[1,2]) sns.barplot(x='LotShape',y='BsmtFinSF2',data=train)
<matplotlib.axes._subplots.AxesSubplot at 0x12c7a68d0>

kaggle house price

  • 已装修完成的第二个地下室的面积与销售价格没有明显的关系
  • 而且大部分的数据都是未完成装修的,与上一个特征相关性较高
  • 可以采用是否完成装修来转化该特征(类似于缺失值的补充,变成是否缺失)
all_data['BsmtFinType2_None'].value_counts()
0    2835
1 80
Name: BsmtFinType2_None, dtype: int64
all_data['BsmtFinSf2_Flag'] = all_data['BsmtFinSF2'].map(lambda x:0 if x==0 else 1)
all_data.drop('BsmtFinSF2', axis=1, inplace=True)
all_data['BsmtFinSf2_Flag'].value_counts()
0    2568
1 347
Name: BsmtFinSf2_Flag, dtype: int64
BsmtUnfSF
"""
Unfinished square feet of basement area """
grid = plt.GridSpec(2,3,wspace=0.15,hspace=0.25)
# 创建画布指定子图将放置的网格的几何位置。 需要设置网格的行数和列数。 子图布局参数(例如,左,右等)可以选择性调整。
plt.subplots(figsize=(30,15))
plt.subplot(grid[0,0]) g = sns.regplot(x=train['BsmtUnfSF'], y=train['SalePrice'], fit_reg=False, label = "corr: %2f"%(pearsonr(train['BsmtUnfSF'], train['SalePrice'])[0]))
# g= sns.regplot(x=train['BsmtFinSF1'],y=train["SalePrice"],fit_reg==False,label= "Corr:%2f" %(pearsonr(train['BsmtFinType1'],train['SalePrice'])[0]))
g.legend(loc='best') plt.subplot(grid[0,1:]) sns.boxplot(x='Neighborhood',y='BsmtUnfSF',data=train) plt.subplot(grid[1,0])
sns.barplot(x='BldgType',y= 'BsmtUnfSF',data=train) plt.subplot(grid[1,1]) sns.barplot(x='HouseStyle',y ='BsmtUnfSF',data=train) plt.subplot(grid[1,2]) sns.barplot(x='LotShape',y='BsmtUnfSF',data=train)
<matplotlib.axes._subplots.AxesSubplot at 0x118d8b940>

kaggle house price


"""
This feature has a significant positive correlation with SalePrice, with a small proportion of data points having a value of 0.
This tells me that most houses will have some amount of square feet unfinished within the basement, and this actually positively contributes towards SalePrice.
The amount of unfinished square feet also varies widely based on location and style.
Whereas the average unfinished square feet within the basement is fairly consistent across the different lot shapes.
Since this is a continuous numeric feature with a significant correlation, I will bin this and create dummy variables.
与售价正相关,
Unfinished square feet of basement area 与lot shape 没啥关系
连续值变量,需要进行封箱操作,然后将封箱之后的特征进行one-hot转化
"""
all_data['BsmtUnfSF_Band'] = pd.cut(all_data['BsmtUnfSF'], 3,labels=['1','2','3'])
all_data.drop('BsmtUnfSF',axis=1,inplace=True)
all_data['BsmtUnfSF_Band'].unique()
all_data['BsmtUnfSF_Band'] = all_data['BsmtUnfSF_Band'].astype(int)
all_data = pd.get_dummies(all_data, columns = ["BsmtUnfSF_Band"], prefix="BsmtUnfSF")
all_data.head()
1stFlrSF 2ndFlrSF 3SsnPorch Alley BedroomAbvGr BldgType BsmtCond BsmtExposure BsmtFullBath BsmtHalfBath ... BsmtFinType2_BLQ BsmtFinType2_GLQ BsmtFinType2_LwQ BsmtFinType2_None BsmtFinType2_Rec BsmtFinType2_Unf BsmtFinSf2_Flag BsmtUnfSF_1 BsmtUnfSF_2 BsmtUnfSF_3
0 856 854 0 None 3 1Fam 3 1 1.0 0.0 ... 0 0 0 0 0 1 0 1 0 0
1 1262 0 0 None 3 1Fam 3 4 0.0 1.0 ... 0 0 0 0 0 1 0 1 0 0
2 920 866 0 None 3 1Fam 3 2 1.0 0.0 ... 0 0 0 0 0 1 0 1 0 0
3 961 756 0 None 3 1Fam 4 1 1.0 0.0 ... 0 0 0 0 0 1 0 1 0 0
4 1145 1053 0 None 4 1Fam 3 3 1.0 0.0 ... 0 0 0 0 0 1 0 1 0 0

5 rows × 140 columns

TotalBsmtSF
"""
Total square feet of basement area.
"""
grid = plt.GridSpec(2,3,wspace=0.15,hspace=0.25)
# 创建画布指定子图将放置的网格的几何位置。 需要设置网格的行数和列数。 子图布局参数(例如,左,右等)可以选择性调整。
plt.subplots(figsize=(30,15))
plt.subplot(grid[0,0]) g = sns.regplot(x=train['TotalBsmtSF'], y=train['SalePrice'], fit_reg=False, label = "corr: %2f"%(pearsonr(train['TotalBsmtSF'], train['SalePrice'])[0]))
# g= sns.regplot(x=train['BsmtFinSF1'],y=train["SalePrice"],fit_reg==False,label= "Corr:%2f" %(pearsonr(train['BsmtFinType1'],train['SalePrice'])[0]))
g.legend(loc='best') plt.subplot(grid[0,1:]) sns.boxplot(x='Neighborhood',y='TotalBsmtSF',data=train) plt.subplot(grid[1,0])
sns.barplot(x='BldgType',y= 'TotalBsmtSF',data=train) plt.subplot(grid[1,1]) sns.barplot(x='HouseStyle',y ='TotalBsmtSF',data=train) plt.subplot(grid[1,2]) sns.barplot(x='LotShape',y='TotalBsmtSF',data=train)
<matplotlib.axes._subplots.AxesSubplot at 0x12d9b3d30>

kaggle house price

def get_feature_corr(feature_name):
grid = plt.GridSpec(2,3,wspace=0.15,hspace=0.25)
# 创建画布指定子图将放置的网格的几何位置。 需要设置网格的行数和列数。 子图布局参数(例如,左,右等)可以选择性调整。
plt.subplots(figsize=(30,15))
plt.subplot(grid[0,0]) g = sns.regplot(x=train[feature_name], y=train['SalePrice'], fit_reg=False, label = "corr: %2f"%(pearsonr(train[feature_name], train['SalePrice'])[0]))
# g= sns.regplot(x=train['BsmtFinSF1'],y=train["SalePrice"],fit_reg==False,label= "Corr:%2f" %(pearsonr(train['BsmtFinType1'],train['SalePrice'])[0]))
g.legend(loc='best') plt.subplot(grid[0,1:]) sns.boxplot(x='Neighborhood',y=feature_name,data=train) plt.subplot(grid[1,0])
sns.barplot(x='BldgType',y= feature_name,data=train) plt.subplot(grid[1,1]) sns.barplot(x='HouseStyle',y =feature_name,data=train) plt.subplot(grid[1,2]) sns.barplot(x='LotShape',y=feature_name,data=train)
plt.show()
1stFlrSF
get_feature_corr('1stFlrSF')
"""
First floor square feet.
"""

kaggle house price

'\nFirst floor square feet.\n'
  • 第一层的面积与售价有着很强的相关性
  • 不同的街区对于第一层的面积分布范围变化很大
  • 对于不同的房型,第一层的面积变化不大
  • 该特征为连续值,需要进行封箱然后one-hot转化
all_data['1stFlrSF_Band'] = pd.cut(all_data['1stFlrSF'], 6,labels=['1','2','3','4','5','6'])
all_data['1stFlrSF_Band'].unique()
all_data['1stFlrSF_Band'] = all_data['1stFlrSF_Band'].astype(int) all_data.drop('1stFlrSF', axis=1, inplace=True)
all_data = pd.get_dummies(all_data, columns = ["1stFlrSF_Band"], prefix="1stFlrSF")
all_data.head(3)
2ndFlrSF 3SsnPorch Alley BedroomAbvGr BldgType BsmtCond BsmtExposure BsmtFullBath BsmtHalfBath BsmtQual ... BsmtFinSf2_Flag BsmtUnfSF_1 BsmtUnfSF_2 BsmtUnfSF_3 1stFlrSF_1 1stFlrSF_2 1stFlrSF_3 1stFlrSF_4 1stFlrSF_5 1stFlrSF_6
0 854 0 None 3 1Fam 3 1 1.0 0.0 3 ... 0 1 0 0 1 0 0 0 0 0
1 0 0 None 3 1Fam 3 4 0.0 1.0 3 ... 0 1 0 0 0 1 0 0 0 0
2 866 0 None 3 1Fam 3 2 1.0 0.0 3 ... 0 1 0 0 1 0 0 0 0 0

3 rows × 145 columns

2ndFlrSF
get_feature_corr('2ndFlrSF')
"""
Second floor square feet.
"""

kaggle house price

'\nSecond floor square feet.\n'
  • 很多房子没有第二层,所有很多房子的第二层面积为0
  • 第二层面积与街区的变化很大
  • 对于不同的房型,第二层的面积变化很大
  • 连续值变量,进行封箱,然后进行one-hot转化
all_data['2ndFlrSF_Band'] = pd.cut(all_data['2ndFlrSF'], 6,labels=list('123456'))
all_data['2ndFlrSF_Band'].unique()
all_data=pd.get_dummies(all_data,columns=['2ndFlrSF_Band'],prefix="2ndFlrSF")
all_data.drop('2ndFlrSF', axis=1, inplace=True)
all_data.head()
3SsnPorch Alley BedroomAbvGr BldgType BsmtCond BsmtExposure BsmtFullBath BsmtHalfBath BsmtQual CentralAir ... 1stFlrSF_3 1stFlrSF_4 1stFlrSF_5 1stFlrSF_6 2ndFlrSF_1 2ndFlrSF_2 2ndFlrSF_3 2ndFlrSF_4 2ndFlrSF_5 2ndFlrSF_6
0 0 None 3 1Fam 3 1 1.0 0.0 3 Y ... 0 0 0 0 0 0 1 0 0 0
1 0 None 3 1Fam 3 4 0.0 1.0 3 Y ... 0 0 0 0 1 0 0 0 0 0
2 0 None 3 1Fam 3 2 1.0 0.0 3 Y ... 0 0 0 0 0 0 1 0 0 0
3 0 None 3 1Fam 4 1 1.0 0.0 2 Y ... 0 0 0 0 0 0 1 0 0 0
4 0 None 4 1Fam 3 3 1.0 0.0 3 Y ... 0 0 0 0 0 0 0 1 0 0

5 rows × 150 columns

LowQualFinSF
get_feature_corr('LowQualFinSF')

'''
Low quality finished square feet (all floors)
'''

kaggle house price

'\nLow quality finished square feet (all floors)\n'
  • 针对该特征可以将特征转化为0-1
all_data['LowQualFinSF_Flag'] = all_data['LowQualFinSF'].map(lambda x:0 if x==0 else 1)
all_data.drop('LowQualFinSF', axis=1, inplace=True)
BsmtHalfBath BsmtFullBath HalfBath FullBath
all_data['TotalBathrooms'] = all_data['BsmtHalfBath'] + all_data['BsmtFullBath'] + all_data['HalfBath'] + all_data['FullBath']

columns = ['BsmtHalfBath', 'BsmtFullBath', 'HalfBath', 'FullBath']
all_data.drop(columns, axis=1, inplace=True)
def get_feature_corr1(feature_name,order=None):
plt.subplots(figsize =(20, 5)) plt.subplot(1, 3, 1)
sns.boxplot(x=feature_name, y="SalePrice", data=train,order=order) plt.subplot(1, 3, 2)
sns.stripplot(x=feature_name, y="SalePrice", data=train, size = 5, jitter = True ,order=order); plt.subplot(1, 3, 3)
sns.barplot(x=feature_name, y="SalePrice", data=train,order=order)
plt.show()
get_feature_corr1('BedroomAbvGr',order=None)
"""
Bedrooms above grade (does not include basement bedrooms)
"""

kaggle house price

'\nBedrooms above grade (does not include basement bedrooms)\n'
get_feature_corr1('KitchenAbvGr',order=None)

kaggle house price

get_feature_corr1('KitchenQual',order=['Fa','TA','Gd','Ex'])
print("""
该特征需要转化category with order
""")

kaggle house price



该特征需要转化category with order

all_data['KitchenQual'] = all_data['KitchenQual'].map({"Fa":1, "TA":2, "Gd":3, "Ex":4})
all_data['KitchenQual'].unique()
array([3, 2, 4, 1])
TotRmsAbvGrd
get_feature_corr1('TotRmsAbvGrd')

kaggle house price

Fireplaces
get_feature_corr1('Fireplaces')

kaggle house price

FireplaceQu
get_feature_corr1('FireplaceQu',order=['Po','Fa','TA','Gd','Ex'])

kaggle house price

all_data['FireplaceQu'] = all_data['FireplaceQu'].map({"None":0, "Po":1, "Fa":2, "TA":3, "Gd":4, "Ex":5})
all_data['FireplaceQu'].unique()
array([0, 3, 4, 2, 5, 1])
GrLivArea
get_feature_corr('GrLivArea')

kaggle house price

  • 特征为连续值,且与售价相关性非常强
  • 封箱然后转化为one-hot特征
all_data['GrLivArea_Band'] = pd.cut(all_data['GrLivArea'], 6,labels=list('123456'))
all_data['GrLivArea_Band'].unique()
all_data['GrLivArea_Band'] = all_data['GrLivArea_Band'].astype(int)
all_data.drop('GrLivArea',axis=1,inplace=True)
all_data = pd.get_dummies(all_data, columns = ["GrLivArea_Band"], prefix="GrLivArea")
all_data.head(3)
3SsnPorch Alley BedroomAbvGr BldgType BsmtCond BsmtExposure BsmtQual CentralAir Condition1 Condition2 ... 2ndFlrSF_5 2ndFlrSF_6 LowQualFinSF_Flag TotalBathrooms GrLivArea_1 GrLivArea_2 GrLivArea_3 GrLivArea_4 GrLivArea_5 GrLivArea_6
0 0 None 3 1Fam 3 1 3 Y Norm Norm ... 0 0 0 4.0 0 1 0 0 0 0
1 0 None 3 1Fam 3 4 3 Y Feedr Norm ... 0 0 0 3.0 0 1 0 0 0 0
2 0 None 3 1Fam 3 2 3 Y Norm Norm ... 0 0 0 4.0 0 1 0 0 0 0

3 rows × 152 columns

MSSubClass
get_feature_corr1('MSSubClass')

kaggle house price

all_data['MSSubClass'] = all_data['MSSubClass'].astype(str)

all_data = pd.get_dummies(all_data, columns = ["MSSubClass"], prefix="MSSubClass")
all_data.head(3)

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
3SsnPorch Alley BedroomAbvGr BldgType BsmtCond BsmtExposure BsmtQual CentralAir Condition1 Condition2 ... MSSubClass_30 MSSubClass_40 MSSubClass_45 MSSubClass_50 MSSubClass_60 MSSubClass_70 MSSubClass_75 MSSubClass_80 MSSubClass_85 MSSubClass_90
0 0 None 3 1Fam 3 1 3 Y Norm Norm ... 0 0 0 0 1 0 0 0 0 0
1 0 None 3 1Fam 3 4 3 Y Feedr Norm ... 0 0 0 0 0 0 0 0 0 0
2 0 None 3 1Fam 3 2 3 Y Norm Norm ... 0 0 0 0 1 0 0 0 0 0

3 rows × 167 columns

BldgType
get_feature_corr1('BldgType')

kaggle house price

all_data['BldgType'] = all_data['BldgType'].astype(str)

all_data = pd.get_dummies(all_data, columns = ["BldgType"], prefix="BldgType")
all_data.head(3)

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
3SsnPorch Alley BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Condition1 Condition2 Electrical ... MSSubClass_70 MSSubClass_75 MSSubClass_80 MSSubClass_85 MSSubClass_90 BldgType_1Fam BldgType_2fmCon BldgType_Duplex BldgType_Twnhs BldgType_TwnhsE
0 0 None 3 3 1 3 Y Norm Norm SBrkr ... 0 0 0 0 0 1 0 0 0 0
1 0 None 3 3 4 3 Y Feedr Norm SBrkr ... 0 0 0 0 0 1 0 0 0 0
2 0 None 3 3 2 3 Y Norm Norm SBrkr ... 0 0 0 0 0 1 0 0 0 0

3 rows × 171 columns

HouseStyle
get_feature_corr1('HouseStyle')

kaggle house price

all_data['HouseStyle'] = all_data['HouseStyle'].map({"2Story":"2Story", "1Story":"1Story", "1.5Fin":"1.5Story", "1.5Unf":"1.5Story",
"SFoyer":"SFoyer", "SLvl":"SLvl", "2.5Unf":"2.5Story", "2.5Fin":"2.5Story"}) all_data = pd.get_dummies(all_data, columns = ["HouseStyle"], prefix="HouseStyle")
all_data.head(3)

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
3SsnPorch Alley BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Condition1 Condition2 Electrical ... BldgType_2fmCon BldgType_Duplex BldgType_Twnhs BldgType_TwnhsE HouseStyle_1.5Story HouseStyle_1Story HouseStyle_2.5Story HouseStyle_2Story HouseStyle_SFoyer HouseStyle_SLvl
0 0 None 3 3 1 3 Y Norm Norm SBrkr ... 0 0 0 0 0 0 0 1 0 0
1 0 None 3 3 4 3 Y Feedr Norm SBrkr ... 0 0 0 0 0 1 0 0 0 0
2 0 None 3 3 2 3 Y Norm Norm SBrkr ... 0 0 0 0 0 0 0 1 0 0

3 rows × 176 columns

OverallQual
get_feature_corr1('OverallQual')

kaggle house price

OverallCond
get_feature_corr1('OverallCond')

kaggle house price

YearRemodAdd
get_feature_corr1('YearRemodAdd')

kaggle house price

train['Remod_Diff'] = train['YearRemodAdd'] - train['YearBuilt']

plt.subplots(figsize =(40, 10))
sns.barplot(x="Remod_Diff", y="SalePrice", data=train);

kaggle house price

all_data['Remod_Diff'] = all_data['YearRemodAdd'] - all_data['YearBuilt']

all_data.drop('YearRemodAdd', axis=1, inplace=True)
YearBuilt
get_feature_corr1('YearBuilt')

kaggle house price

all_data['YearBuilt_Band'] = pd.cut(all_data['YearBuilt'], 7,labels=list('1234567'))
all_data['YearBuilt_Band'].unique()
all_data['YearBuilt_Band'] = all_data['YearBuilt_Band'].astype(int)
all_data.drop('YearBuilt',axis=1,inplace=True)
all_data = pd.get_dummies(all_data, columns = ["YearBuilt_Band"], prefix="YearBuilt")
all_data.head(3)
3SsnPorch Alley BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Condition1 Condition2 Electrical ... HouseStyle_SFoyer HouseStyle_SLvl Remod_Diff YearBuilt_1 YearBuilt_2 YearBuilt_3 YearBuilt_4 YearBuilt_5 YearBuilt_6 YearBuilt_7
0 0 None 3 3 1 3 Y Norm Norm SBrkr ... 0 0 0 0 0 0 0 0 0 1
1 0 None 3 3 4 3 Y Feedr Norm SBrkr ... 0 0 0 0 0 0 0 0 1 0
2 0 None 3 3 2 3 Y Norm Norm SBrkr ... 0 0 1 0 0 0 0 0 0 1

3 rows × 182 columns

Foundation
get_feature_corr1('Foundation')

kaggle house price

all_data = pd.get_dummies(all_data, columns = ["Foundation"], prefix="Foundation")
all_data.head(3)
3SsnPorch Alley BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Condition1 Condition2 Electrical ... YearBuilt_4 YearBuilt_5 YearBuilt_6 YearBuilt_7 Foundation_BrkTil Foundation_CBlock Foundation_PConc Foundation_Slab Foundation_Stone Foundation_Wood
0 0 None 3 3 1 3 Y Norm Norm SBrkr ... 0 0 0 1 0 0 1 0 0 0
1 0 None 3 3 4 3 Y Feedr Norm SBrkr ... 0 0 1 0 0 1 0 0 0 0
2 0 None 3 3 2 3 Y Norm Norm SBrkr ... 0 0 0 1 0 0 1 0 0 0

3 rows × 187 columns

Functional
get_feature_corr1('Functional')

kaggle house price

all_data['Functional'] = all_data['Functional'].map({"Sev":1, "Maj2":2, "Maj1":3, "Mod":4, "Min2":5, "Min1":6, "Typ":7})
all_data['Functional'].unique()
array([7, 6, 3, 5, 4, 2, 1])
RoofStyle
get_feature_corr1('RoofStyle')

kaggle house price

all_data = pd.get_dummies(all_data, columns = ["RoofStyle"], prefix="RoofStyle")
all_data.head(3)
3SsnPorch Alley BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Condition1 Condition2 Electrical ... Foundation_PConc Foundation_Slab Foundation_Stone Foundation_Wood RoofStyle_Flat RoofStyle_Gable RoofStyle_Gambrel RoofStyle_Hip RoofStyle_Mansard RoofStyle_Shed
0 0 None 3 3 1 3 Y Norm Norm SBrkr ... 1 0 0 0 0 1 0 0 0 0
1 0 None 3 3 4 3 Y Feedr Norm SBrkr ... 0 0 0 0 0 1 0 0 0 0
2 0 None 3 3 2 3 Y Norm Norm SBrkr ... 1 0 0 0 0 1 0 0 0 0

3 rows × 192 columns

RoofMatl
"""
Roof material.
""" get_feature_corr1('RoofMatl')

kaggle house price

all_data = pd.get_dummies(all_data, columns = ["RoofMatl"], prefix="RoofMatl")
all_data.head(3)
3SsnPorch Alley BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Condition1 Condition2 Electrical ... RoofStyle_Hip RoofStyle_Mansard RoofStyle_Shed RoofMatl_CompShg RoofMatl_Membran RoofMatl_Metal RoofMatl_Roll RoofMatl_Tar&Grv RoofMatl_WdShake RoofMatl_WdShngl
0 0 None 3 3 1 3 Y Norm Norm SBrkr ... 0 0 0 1 0 0 0 0 0 0
1 0 None 3 3 4 3 Y Feedr Norm SBrkr ... 0 0 0 1 0 0 0 0 0 0
2 0 None 3 3 2 3 Y Norm Norm SBrkr ... 0 0 0 1 0 0 0 0 0 0

3 rows × 198 columns

Exterior1st & Exterior2nd
get_feature_corr1('Exterior1st')

kaggle house price

get_feature_corr1('Exterior2nd')

kaggle house price

def Exter2(col):
if col['Exterior2nd'] == col['Exterior1st']:
return 1
else:
return 0 all_data['ExteriorMatch_Flag'] = all_data.apply(Exter2, axis=1)
all_data.drop('Exterior2nd', axis=1, inplace=True) all_data = pd.get_dummies(all_data, columns = ["Exterior1st"], prefix="Exterior1st")
all_data.head(3)
3SsnPorch Alley BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Condition1 Condition2 Electrical ... Exterior1st_CemntBd Exterior1st_HdBoard Exterior1st_ImStucc Exterior1st_MetalSd Exterior1st_Plywood Exterior1st_Stone Exterior1st_Stucco Exterior1st_VinylSd Exterior1st_Wd Sdng Exterior1st_WdShing
0 0 None 3 3 1 3 Y Norm Norm SBrkr ... 0 0 0 0 0 0 0 1 0 0
1 0 None 3 3 4 3 Y Feedr Norm SBrkr ... 0 0 0 1 0 0 0 0 0 0
2 0 None 3 3 2 3 Y Norm Norm SBrkr ... 0 0 0 0 0 0 0 1 0 0

3 rows × 212 columns

MasVnrType
get_feature_corr1('MasVnrType')

kaggle house price

all_data = pd.get_dummies(all_data, columns = ["MasVnrType"], prefix="MasVnrType")
all_data.head(3)
3SsnPorch Alley BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Condition1 Condition2 Electrical ... Exterior1st_Plywood Exterior1st_Stone Exterior1st_Stucco Exterior1st_VinylSd Exterior1st_Wd Sdng Exterior1st_WdShing MasVnrType_BrkCmn MasVnrType_BrkFace MasVnrType_None MasVnrType_Stone
0 0 None 3 3 1 3 Y Norm Norm SBrkr ... 0 0 0 1 0 0 0 1 0 0
1 0 None 3 3 4 3 Y Feedr Norm SBrkr ... 0 0 0 0 0 0 0 0 1 0
2 0 None 3 3 2 3 Y Norm Norm SBrkr ... 0 0 0 1 0 0 0 1 0 0

3 rows × 215 columns

MasVnrArea
get_feature_corr('MasVnrArea')

kaggle house price

  • 这个特征没啥意义,各个维度与这个特征的相关性都不是很大,变化都很大,且没有规律
all_data.drop('MasVnrArea', axis=1, inplace=True)
ExterQual
get_feature_corr1('ExterQual',order=['Fa','TA','Gd', 'Ex'])

kaggle house price

all_data['ExterQual'] = all_data['ExterQual'].map({"Fa":1, "TA":2, "Gd":3, "Ex":4})
all_data['ExterQual'].unique()
array([3, 2, 4, 1])
ExterCond
"""
Evaluates the present condition of the material on the exterior.
"""
'\nEvaluates the present condition of the material on the exterior.\n'
get_feature_corr1('ExterCond',order=['Po','Fa',"TA",'Gd','Ex'])

kaggle house price

all_data = pd.get_dummies(all_data, columns = ["ExterCond"], prefix="ExterCond")
all_data.head(3)
3SsnPorch Alley BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Condition1 Condition2 Electrical ... Exterior1st_WdShing MasVnrType_BrkCmn MasVnrType_BrkFace MasVnrType_None MasVnrType_Stone ExterCond_Ex ExterCond_Fa ExterCond_Gd ExterCond_Po ExterCond_TA
0 0 None 3 3 1 3 Y Norm Norm SBrkr ... 0 0 1 0 0 0 0 0 0 1
1 0 None 3 3 4 3 Y Feedr Norm SBrkr ... 0 0 0 1 0 0 0 0 0 1
2 0 None 3 3 2 3 Y Norm Norm SBrkr ... 0 0 1 0 0 0 0 0 0 1

3 rows × 218 columns

GarageType
"""
location of the Garage
"""
get_feature_corr1('GarageType')

kaggle house price

  • 如果观察了该特征 ,其实可以发现这些现象值是有优劣关系的,但是售价并没有跟特征的优劣值进行对应,因此可以简单将这些特征进行one-hot转化也可以实现,
  • builtin 的车库房屋售价平均值最高
all_data = pd.get_dummies(all_data, columns = ["GarageType"], prefix="GarageType")
all_data.head(3)

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
3SsnPorch Alley BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Condition1 Condition2 Electrical ... ExterCond_Gd ExterCond_Po ExterCond_TA GarageType_2Types GarageType_Attchd GarageType_Basment GarageType_BuiltIn GarageType_CarPort GarageType_Detchd GarageType_None
0 0 None 3 3 1 3 Y Norm Norm SBrkr ... 0 0 1 0 1 0 0 0 0 0
1 0 None 3 3 4 3 Y Feedr Norm SBrkr ... 0 0 1 0 1 0 0 0 0 0
2 0 None 3 3 2 3 Y Norm Norm SBrkr ... 0 0 1 0 1 0 0 0 0 0

3 rows × 224 columns

GarageYrBlt
"""
Year Garage was built
"""
get_feature_corr1('GarageYrBlt')

kaggle house price

  • 年代越近,售价有逐步走高的趋势
plt.subplots(figsize =(50, 10))

sns.boxplot(x="GarageYrBlt", y="SalePrice", data=train);

kaggle house price

plt.subplots(figsize =(50, 10))
sns.violinplot(x = 'GarageYrBlt', y = 'SalePrice', data = train,
linewidth = 2, #线宽
width = 0.8, #箱之间的间隔比例
palette = 'hls', #设置调色板
# order = {'Thur', 'Fri', 'Sat','Sun'}, #筛选类别
# scale = 'count', #测度小提琴图的宽度: area-面积相同,count-按照样本数量决定宽度,width-宽度一样
gridsize = 50, #设置小提琴图的平滑度,越高越平滑
inner = 'box', #设置内部显示类型 --> 'box','quartile','point','stick',None
#bw = 0.8 #控制拟合程度,一般可以不设置
)
### 新学到的seaborn中的一些新图
<matplotlib.axes._subplots.AxesSubplot at 0x12e2cec50>

kaggle house price

train['GarageYrBlt'].value_counts()
sns.distplot(train['GarageYrBlt'].dropna(), kde=True, bins=5, rug=True)
<matplotlib.axes._subplots.AxesSubplot at 0x12945c940>

kaggle house price

all_data['GarageYrBlt_Band']  = pd.qcut(all_data['GarageYrBlt'],3,labels=list('123'))
# qcut是根据这些值的频率来选择箱子的均匀间隔,即每个箱子中含有的数的数量是相同的
# cut将根据值本身来选择箱子均匀间隔,即每个箱子的间距都是相同的
all_data['GarageYrBlt_Band'] = all_data['GarageYrBlt_Band'].astype(int)
all_data.drop(['GarageYrBlt'],axis=1,inplace=True)
all_data = pd.get_dummies(all_data, columns = ["GarageYrBlt_Band"], prefix="GarageYrBlt")  # 默认删除掉原来的特征,因此不必删除旧值
all_data.head(3)
3SsnPorch Alley BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Condition1 Condition2 Electrical ... GarageType_2Types GarageType_Attchd GarageType_Basment GarageType_BuiltIn GarageType_CarPort GarageType_Detchd GarageType_None GarageYrBlt_1 GarageYrBlt_2 GarageYrBlt_3
0 0 None 3 3 1 3 Y Norm Norm SBrkr ... 0 1 0 0 0 0 0 0 0 1
1 0 None 3 3 4 3 Y Feedr Norm SBrkr ... 0 1 0 0 0 0 0 0 1 0
2 0 None 3 3 2 3 Y Norm Norm SBrkr ... 0 1 0 0 0 0 0 0 0 1

3 rows × 226 columns

GarageFinish
get_feature_corr1('GarageFinish')

kaggle house price

all_data = pd.get_dummies(all_data, columns = ["GarageFinish"], prefix="GarageFinish")
all_data.head(3)
3SsnPorch Alley BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Condition1 Condition2 Electrical ... GarageType_CarPort GarageType_Detchd GarageType_None GarageYrBlt_1 GarageYrBlt_2 GarageYrBlt_3 GarageFinish_Fin GarageFinish_None GarageFinish_RFn GarageFinish_Unf
0 0 None 3 3 1 3 Y Norm Norm SBrkr ... 0 0 0 0 0 1 0 0 1 0
1 0 None 3 3 4 3 Y Feedr Norm SBrkr ... 0 0 0 0 1 0 0 0 1 0
2 0 None 3 3 2 3 Y Norm Norm SBrkr ... 0 0 0 0 0 1 0 0 1 0

3 rows × 229 columns

GarageCars
"""
size of the Garage in car capacity
默认是的数字不用其他操作,3辆车容量的车库售价最高,四辆车的转手频率较低(5个样本)
"""
get_feature_corr1('GarageCars')

kaggle house price

GarageArea
get_feature_corr('GarageArea')

kaggle house price

all_data['GarageArea_Band']  = pd.cut(all_data['GarageArea'],3,labels=list('123'))
all_data['GarageArea_Band'] =all_data['GarageArea_Band'].astype('int')
all_data.drop(['GarageArea'],axis=1,inplace=True)
all_data = pd.get_dummies(all_data, columns = ["GarageArea_Band"], prefix="GarageArea")
all_data.head(3)
3SsnPorch Alley BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Condition1 Condition2 Electrical ... GarageYrBlt_1 GarageYrBlt_2 GarageYrBlt_3 GarageFinish_Fin GarageFinish_None GarageFinish_RFn GarageFinish_Unf GarageArea_1 GarageArea_2 GarageArea_3
0 0 None 3 3 1 3 Y Norm Norm SBrkr ... 0 0 1 0 0 1 0 0 1 0
1 0 None 3 3 4 3 Y Feedr Norm SBrkr ... 0 1 0 0 0 1 0 1 0 0
2 0 None 3 3 2 3 Y Norm Norm SBrkr ... 0 0 1 0 0 1 0 0 1 0

3 rows × 231 columns

GarageQual
"""
Garage quality
""" get_feature_corr1('GarageQual',order=['Po','Fa','TA','Gd','Ex'])

kaggle house price

  • "TA"的出售的价格有较高的值以及数量较为集中,而两端的数据却很分散,因此可以两边的特征进行合并
all_data['GarageQual'] = all_data['GarageQual'].map({"None":"None", "Po":"Low", "Fa":"Low", "TA":"TA", "Gd":"High", "Ex":"High"})
all_data['GarageQual'].unique()
array(['TA', 'Low', 'High', 'None'], dtype=object)
all_data = pd.get_dummies(all_data, columns = ["GarageQual"], prefix="GarageQual")
all_data.head(3)
3SsnPorch Alley BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Condition1 Condition2 Electrical ... GarageFinish_None GarageFinish_RFn GarageFinish_Unf GarageArea_1 GarageArea_2 GarageArea_3 GarageQual_High GarageQual_Low GarageQual_None GarageQual_TA
0 0 None 3 3 1 3 Y Norm Norm SBrkr ... 0 1 0 0 1 0 0 0 0 1
1 0 None 3 3 4 3 Y Feedr Norm SBrkr ... 0 1 0 1 0 0 0 0 0 1
2 0 None 3 3 2 3 Y Norm Norm SBrkr ... 0 1 0 0 1 0 0 0 0 1

3 rows × 234 columns

GarageCond
"""
Garage condition.
""" get_feature_corr1('GarageCond',order=['Po','Fa','TA','Gd','Ex'])

kaggle house price

  • 该特征与garage quality 特征处理方式类似
all_data['GarageCond']= all_data['GarageCond'].map({"None":'None',"Po":'Low','Fa':'Low','TA':'TA','Gd':'High','Ex':'High'})
all_data['GarageCond'].unique()
array(['TA', 'Low', 'None', 'High'], dtype=object)
all_data = pd.get_dummies(all_data, columns = ["GarageCond"], prefix="GarageCond")
all_data.head(3)
3SsnPorch Alley BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Condition1 Condition2 Electrical ... GarageArea_2 GarageArea_3 GarageQual_High GarageQual_Low GarageQual_None GarageQual_TA GarageCond_High GarageCond_Low GarageCond_None GarageCond_TA
0 0 None 3 3 1 3 Y Norm Norm SBrkr ... 1 0 0 0 0 1 0 0 0 1
1 0 None 3 3 4 3 Y Feedr Norm SBrkr ... 0 0 0 0 0 1 0 0 0 1
2 0 None 3 3 2 3 Y Norm Norm SBrkr ... 1 0 0 0 0 1 0 0 0 1

3 rows × 237 columns

WoodDeckSF
"""
Wood deck area in SF.
""" get_feature_corr('WoodDeckSF')

kaggle house price

  • high correlation with salesPrice
  • 很多的0值,需要单独创建一个特征,来说明是否伟木质材料构建
  • 对于非0值,进行封箱操作,然后转化为one-hot特征
def WoodDeckFlag(col):
if col['WoodDeckSF'] == 0:
return 1
else:
return 0 all_data['NoWoodDeck_Flag'] = all_data.apply(WoodDeckFlag, axis=1) # new feature all_data['WoodDeckSF_Band'] = pd.cut(all_data['WoodDeckSF'], 4,labels=list('1234')) ## bin all_data['WoodDeckSF_Band'] = all_data['WoodDeckSF_Band'].astype(int) all_data.drop('WoodDeckSF', axis=1, inplace=True) all_data = pd.get_dummies(all_data, columns = ["WoodDeckSF_Band"], prefix="WoodDeckSF")
all_data.head(3)
3SsnPorch Alley BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Condition1 Condition2 Electrical ... GarageQual_TA GarageCond_High GarageCond_Low GarageCond_None GarageCond_TA NoWoodDeck_Flag WoodDeckSF_1 WoodDeckSF_2 WoodDeckSF_3 WoodDeckSF_4
0 0 None 3 3 1 3 Y Norm Norm SBrkr ... 1 0 0 0 1 1 1 0 0 0
1 0 None 3 3 4 3 Y Feedr Norm SBrkr ... 1 0 0 0 1 0 1 0 0 0
2 0 None 3 3 2 3 Y Norm Norm SBrkr ... 1 0 0 0 1 1 1 0 0 0

3 rows × 241 columns

TotalPorchSF
"""
OpenPorchSF, EnclosedPorch, 3SsnPorch & ScreenPorch I will sum these features together to create a total porch in square feet feature.
"""
all_data['TotalPorchSF'] = all_data['OpenPorchSF'] + all_data['OpenPorchSF'] + all_data['EnclosedPorch'] + all_data['3SsnPorch'] + all_data['ScreenPorch']
train['TotalPorchSF'] = train['OpenPorchSF'] + train['OpenPorchSF'] + train['EnclosedPorch'] + train['3SsnPorch'] + train['ScreenPorch']
get_feature_corr('TotalPorchSF')

kaggle house price

def PorchFlag(col):
if col['TotalPorchSF'] == 0:
return 1
else:
return 0 all_data['NoPorch_Flag'] = all_data.apply(PorchFlag, axis=1) all_data['TotalPorchSF_Band'] = pd.cut(all_data['TotalPorchSF'], 4,labels=list('1234'))
all_data['TotalPorchSF_Band'].unique()
all_data['TotalPorchSF_Band'] = all_data['TotalPorchSF_Band'].astype(int) all_data.drop('TotalPorchSF', axis=1, inplace=True) all_data = pd.get_dummies(all_data, columns = ["TotalPorchSF_Band"], prefix="TotalPorchSF")
all_data.head(3)
3SsnPorch Alley BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Condition1 Condition2 Electrical ... NoWoodDeck_Flag WoodDeckSF_1 WoodDeckSF_2 WoodDeckSF_3 WoodDeckSF_4 NoPorch_Flag TotalPorchSF_1 TotalPorchSF_2 TotalPorchSF_3 TotalPorchSF_4
0 0 None 3 3 1 3 Y Norm Norm SBrkr ... 1 1 0 0 0 0 1 0 0 0
1 0 None 3 3 4 3 Y Feedr Norm SBrkr ... 0 1 0 0 0 1 1 0 0 0
2 0 None 3 3 2 3 Y Norm Norm SBrkr ... 1 1 0 0 0 0 1 0 0 0

3 rows × 246 columns

PoolArea
"""
PoolArea Pool area in square feet.
"""
get_feature_corr('PoolArea')

kaggle house price

def PoolFlag(col):
if col['PoolArea'] == 0:
return 0
else:
return 1 all_data['HasPool_Flag'] = all_data.apply(PoolFlag, axis=1)
all_data.drop('PoolArea', axis=1, inplace=True)
PoolQC
"""
Pool quality.
"""
get_feature_corr1('PoolQC',order=['Fa','Gd','Ex'])

kaggle house price

all_data['PoolQC'].value_counts()  #  总共8个数据带pool,其他的都是不带的,所以拿到的这个quality数据意义不大
None    2907
Gd 3
Ex 3
Fa 2
Name: PoolQC, dtype: int64
all_data.drop('PoolQC', axis=1, inplace=True)
Fence
'''
Fence: Fence quality GdPrv Good Privacy
MnPrv Minimum Privacy
GdWo Good Wood
MnWw Minimum Wood/Wire
NA No Fence
''' get_feature_corr1('Fence',order=['MnWw','GdWo','MnPrv','GdPrv'])

kaggle house price

all_data = pd.get_dummies(all_data, columns = ["Fence"], prefix="Fence")
all_data.head(3)
3SsnPorch Alley BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Condition1 Condition2 Electrical ... TotalPorchSF_1 TotalPorchSF_2 TotalPorchSF_3 TotalPorchSF_4 HasPool_Flag Fence_GdPrv Fence_GdWo Fence_MnPrv Fence_MnWw Fence_None
0 0 None 3 3 1 3 Y Norm Norm SBrkr ... 1 0 0 0 0 0 0 0 0 1
1 0 None 3 3 4 3 Y Feedr Norm SBrkr ... 1 0 0 0 0 0 0 0 0 1
2 0 None 3 3 2 3 Y Norm Norm SBrkr ... 1 0 0 0 0 0 0 0 0 1

3 rows × 249 columns

MSZoning
"""
MSZoning: Identifies the general zoning classification of the sale. A Agriculture
C Commercial
FV Floating Village Residential
I Industrial
RH Residential High Density
RL Residential Low Density
RP Residential Low Density Park
RM Residential Medium Density
"""
get_feature_corr1('MSZoning')
all_data['MSZoning'].value_counts()

kaggle house price

RL         2265
RM 460
FV 139
RH 26
C (all) 25
Name: MSZoning, dtype: int64
all_data = pd.get_dummies(all_data, columns = ["MSZoning"], prefix="MSZoning")
all_data.head(3)
3SsnPorch Alley BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Condition1 Condition2 Electrical ... Fence_GdPrv Fence_GdWo Fence_MnPrv Fence_MnWw Fence_None MSZoning_C (all) MSZoning_FV MSZoning_RH MSZoning_RL MSZoning_RM
0 0 None 3 3 1 3 Y Norm Norm SBrkr ... 0 0 0 0 1 0 0 0 1 0
1 0 None 3 3 4 3 Y Feedr Norm SBrkr ... 0 0 0 0 1 0 0 0 1 0
2 0 None 3 3 2 3 Y Norm Norm SBrkr ... 0 0 0 0 1 0 0 0 1 0

3 rows × 253 columns

Neighborhood
"""
this feature has lots of values,and SalePrice varies a lot in the values of the feature,
we just use one-hot to transform this feature """ get_feature_corr1('Neighborhood')
all_data = pd.get_dummies(all_data, columns = ["Neighborhood"], prefix="Neighborhood")
all_data.head(3)

kaggle house price

3SsnPorch Alley BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Condition1 Condition2 Electrical ... Neighborhood_NoRidge Neighborhood_NridgHt Neighborhood_OldTown Neighborhood_SWISU Neighborhood_Sawyer Neighborhood_SawyerW Neighborhood_Somerst Neighborhood_StoneBr Neighborhood_Timber Neighborhood_Veenker
0 0 None 3 3 1 3 Y Norm Norm SBrkr ... 0 0 0 0 0 0 0 0 0 0
1 0 None 3 3 4 3 Y Feedr Norm SBrkr ... 0 0 0 0 0 0 0 0 0 1
2 0 None 3 3 2 3 Y Norm Norm SBrkr ... 0 0 0 0 0 0 0 0 0 0

3 rows × 277 columns

Condition1 & Condition2
print('condition1')
get_feature_corr1('Condition1')
print('condition2')
get_feature_corr1('Condition2')
condition1

kaggle house price

condition2

kaggle house price

'''
Condition1: Proximity to various conditions
Artery Adjacent to arterial street
Feedr Adjacent to feeder street
Norm Normal
RRNn Within 200' of North-South Railroad
RRAn Adjacent to North-South Railroad
PosN Near positive off-site feature--park, greenbelt, etc.
PosA Adjacent to postive off-site feature
RRNe Within 200' of East-West Railroad
RRAe Adjacent to East-West Railroad '''
all_data['Condition1'] = all_data['Condition1'].map({"Norm":"Norm", "Feedr":"Street", "PosN":"Pos", "Artery":"Street", "RRAe":"Train",
"RRNn":"Train", "RRAn":"Train", "PosA":"Pos", "RRNe":"Train"})
all_data['Condition2'] = all_data['Condition2'].map({"Norm":"Norm", "Feedr":"Street", "PosN":"Pos", "Artery":"Street", "RRAe":"Train",
"RRNn":"Train", "RRAn":"Train", "PosA":"Pos", "RRNe":"Train"})
def ConditionMatch(col):
if col['Condition1'] == col['Condition2']:
return 0
else:
return 1 all_data['Diff2ndCondition_Flag'] = all_data.apply(ConditionMatch, axis=1)
all_data.drop('Condition2', axis=1, inplace=True) all_data = pd.get_dummies(all_data, columns = ["Condition1"], prefix="Condition1")
all_data.head(3)
3SsnPorch Alley BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Electrical EnclosedPorch ExterQual ... Neighborhood_SawyerW Neighborhood_Somerst Neighborhood_StoneBr Neighborhood_Timber Neighborhood_Veenker Diff2ndCondition_Flag Condition1_Norm Condition1_Pos Condition1_Street Condition1_Train
0 0 None 3 3 1 3 Y SBrkr 0 3 ... 0 0 0 0 0 0 1 0 0 0
1 0 None 3 3 4 3 Y SBrkr 0 2 ... 0 0 0 0 1 1 0 0 1 0
2 0 None 3 3 2 3 Y SBrkr 0 3 ... 0 0 0 0 0 0 1 0 0 0

3 rows × 280 columns

LotFrontage
"""
Linear feet of street connected to property.
""" get_feature_corr('LotFrontage')

kaggle house price

  • 该特征与saleprice 没有明显的相关性,可以考虑去掉该特征
LotArea
'''
Lot size in square feet.
'''
get_feature_corr('LotArea')

kaggle house price

kaggle house price

  • 该特征与saleprice有着明显的相关性,且该特征与saleprice呈现一个正偏态(峰左移,右偏,正偏)
all_data['LotArea_Band'] = pd.qcut(all_data['LotArea'], 8,labels=list('12345678'))  # 针对分布不均匀的特征使用qcut进行封箱
all_data['LotArea_Band'].unique()
all_data['LotArea_Band'] = all_data['LotArea_Band'].astype(int) all_data.drop('LotArea', axis=1, inplace=True) all_data = pd.get_dummies(all_data, columns = ["LotArea_Band"], prefix="LotArea")
all_data.head(3)
3SsnPorch Alley BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Electrical EnclosedPorch ExterQual ... Condition1_Street Condition1_Train LotArea_1 LotArea_2 LotArea_3 LotArea_4 LotArea_5 LotArea_6 LotArea_7 LotArea_8
0 0 None 3 3 1 3 Y SBrkr 0 3 ... 0 0 0 0 1 0 0 0 0 0
1 0 None 3 3 4 3 Y SBrkr 0 2 ... 1 0 0 0 0 0 1 0 0 0
2 0 None 3 3 2 3 Y SBrkr 0 3 ... 0 0 0 0 0 0 0 1 0 0

3 rows × 287 columns

LotShape
"""
LotShape: General shape of property Reg Regular
IR1 Slightly irregular
IR2 Moderately Irregular
IR3 Irregula
该特征能够明显的影响售价,在国外,不仅仅要有大的面积数,而且尺寸也要合理,否则也很能卖出高价
"""
get_feature_corr1('LotShape')

kaggle house price

all_data = pd.get_dummies(all_data, columns = ["LotShape"], prefix="LotShape")
all_data.head(3)
print("地皮的形状主要集中在Reg,Reg1两个值里面,而且salerice在不同的属性里面变化很大")
地皮的形状主要集中在Reg,Reg1两个值里面,而且salerice在不同的属性里面变化很大
LandContour
"""
LandContour: Flatness of the property Lvl Near Flat/Level
Bnk Banked - Quick and significant rise from street grade to building
HLS Hillside - Significant slope from side to side
Low Depression """
get_feature_corr1('LandContour')
all_data = pd.get_dummies(all_data, columns = ["LandContour"], prefix="LandContour")
all_data.head(3)

kaggle house price

3SsnPorch Alley BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Electrical EnclosedPorch ExterQual ... LotArea_7 LotArea_8 LotShape_IR1 LotShape_IR2 LotShape_IR3 LotShape_Reg LandContour_Bnk LandContour_HLS LandContour_Low LandContour_Lvl
0 0 None 3 3 1 3 Y SBrkr 0 3 ... 0 0 0 0 0 1 0 0 0 1
1 0 None 3 3 4 3 Y SBrkr 0 2 ... 0 0 0 0 0 1 0 0 0 1
2 0 None 3 3 2 3 Y SBrkr 0 3 ... 0 0 1 0 0 0 0 0 0 1

3 rows × 293 columns

LotConfig
"""
LotConfig: Lot configuration Inside Inside lot 内部
Corner Corner lot 角落
CulDSac Cul-de-sac 死胡同
FR2 Frontage on 2 sides of property 前排
FR3 Frontage on 3 sides of property 前排
房子周围的环境
"""
get_feature_corr1('LotConfig')
all_data['LotConfig'] = all_data['LotConfig'].map({"Inside":"Inside", "FR2":"FR", "Corner":"Corner", "CulDSac":"CulDSac", "FR3":"FR"}) all_data = pd.get_dummies(all_data, columns = ["LotConfig"], prefix="LotConfig")
all_data.head(3)

kaggle house price

3SsnPorch Alley BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Electrical EnclosedPorch ExterQual ... LotShape_IR3 LotShape_Reg LandContour_Bnk LandContour_HLS LandContour_Low LandContour_Lvl LotConfig_Corner LotConfig_CulDSac LotConfig_FR LotConfig_Inside
0 0 None 3 3 1 3 Y SBrkr 0 3 ... 0 1 0 0 0 1 0 0 0 1
1 0 None 3 3 4 3 Y SBrkr 0 2 ... 0 1 0 0 0 1 0 0 1 0
2 0 None 3 3 2 3 Y SBrkr 0 3 ... 0 0 0 0 0 1 0 0 0 1

3 rows × 296 columns

LandSlope
"""
LandSlope: Slope of property
Gtl Gentle slope
Mod Moderate Slope
Sev Severe Slope
"""
get_feature_corr1('LandSlope')

kaggle house price

all_data['LandSlope'] = all_data['LandSlope'].map({"Gtl":1, "Mod":0, "Sev":0})
'''
Mod and Sev saleprice 处于同一区间,可以将两者合并
'''
'\nMod and Sev saleprice 处于同一区间,可以将两者合并\n'
all_data['LandSlope'].value_counts()
1    2774
0 141
Name: LandSlope, dtype: int64
Street
get_feature_corr1('Street')

kaggle house price

  • Pave中价格变化很大,且Grvl数量太少,所以该特征意义不大,直接去掉
all_data.drop('Street', axis=1, inplace=True)
Alley
get_feature_corr1('Alley')

kaggle house price

all_data['Alley'].value_counts()
None    2717
Grvl 120
Pave 78
Name: Alley, dtype: int64
all_data = pd.get_dummies(all_data, columns = ["Alley"], prefix="Alley")
all_data.head(3)
3SsnPorch BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Electrical EnclosedPorch ExterQual FireplaceQu ... LandContour_HLS LandContour_Low LandContour_Lvl LotConfig_Corner LotConfig_CulDSac LotConfig_FR LotConfig_Inside Alley_Grvl Alley_None Alley_Pave
0 0 3 3 1 3 Y SBrkr 0 3 0 ... 0 0 1 0 0 0 1 0 1 0
1 0 3 3 4 3 Y SBrkr 0 2 3 ... 0 0 1 0 0 1 0 0 1 0
2 0 3 3 2 3 Y SBrkr 0 3 3 ... 0 0 1 0 0 0 1 0 1 0

3 rows × 297 columns

PvaeDrive
"""
PavedDrive: Paved driveway Y Paved 价格差异较大,且没有明显的顺序关系,需要转化为one-hot特征
P Partial Pavement
N Dirt/Gravel
"""
get_feature_corr1('PavedDrive')

kaggle house price

all_data=pd.get_dummies(all_data,columns=['PavedDrive'],prefix='PavedDrive')
all_data.head()
3SsnPorch BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Electrical EnclosedPorch ExterQual FireplaceQu ... LotConfig_Corner LotConfig_CulDSac LotConfig_FR LotConfig_Inside Alley_Grvl Alley_None Alley_Pave PavedDrive_N PavedDrive_P PavedDrive_Y
0 0 3 3 1 3 Y SBrkr 0 3 0 ... 0 0 0 1 0 1 0 0 0 1
1 0 3 3 4 3 Y SBrkr 0 2 3 ... 0 0 1 0 0 1 0 0 0 1
2 0 3 3 2 3 Y SBrkr 0 3 3 ... 0 0 0 1 0 1 0 0 0 1
3 0 3 4 1 2 Y SBrkr 272 2 4 ... 1 0 0 0 0 1 0 0 0 1
4 0 4 3 3 3 Y SBrkr 0 3 3 ... 0 0 1 0 0 1 0 0 0 1

5 rows × 299 columns

Heating
get_feature_corr1('Heating')

kaggle house price

"""
大量集中在GasA,其余的数据量非常小,可以转化为天然气供暖,和其他方式供暖
"""
all_data['Heating'] = all_data['Heating'].map({'GasA':1,'GasW':0,'Grav':0,'Wall':0,'OthW':0,'Floor':0})
all_data.drop('Heating', axis=1, inplace=True)
all_data.head(3)
3SsnPorch BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Electrical EnclosedPorch ExterQual FireplaceQu ... LotConfig_Corner LotConfig_CulDSac LotConfig_FR LotConfig_Inside Alley_Grvl Alley_None Alley_Pave PavedDrive_N PavedDrive_P PavedDrive_Y
0 0 3 3 1 3 Y SBrkr 0 3 0 ... 0 0 0 1 0 1 0 0 0 1
1 0 3 3 4 3 Y SBrkr 0 2 3 ... 0 0 1 0 0 1 0 0 0 1
2 0 3 3 2 3 Y SBrkr 0 3 3 ... 0 0 0 1 0 1 0 0 0 1

3 rows × 298 columns

HeatingQC
"""
Heating quality and condition.
"""
get_feature_corr1('HeatingQC',order=['Po','Fa','TA','Gd','Ex'])

kaggle house price

all_data['HeatingQC'] = all_data['HeatingQC'].map({"Po":1, "Fa":2, "TA":3, "Gd":4, "Ex":5})
all_data['HeatingQC'].unique()
array([5, 4, 3, 2, 1])
CentralAir
"""
Central air conditioning. """
get_feature_corr1('CentralAir')

kaggle house price

all_data['CentralAir'] = all_data['CentralAir'].map({"Y":1,"N":0})
Electrical
"""
Electrical system. """ get_feature_corr1('Electrical')

kaggle house price

all_data['Electrical'] = all_data['Electrical'].map({'SBrkr':'SBrkr','FuseF':'Fuse','FuseA':'Fuse','FuseP':'Fuse','Mix':'Mix'})
all_data = pd.get_dummies(all_data, columns = ["Electrical"], prefix="Electrical")
all_data.head(3)
3SsnPorch BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir EnclosedPorch ExterQual FireplaceQu Fireplaces ... LotConfig_Inside Alley_Grvl Alley_None Alley_Pave PavedDrive_N PavedDrive_P PavedDrive_Y Electrical_Fuse Electrical_Mix Electrical_SBrkr
0 0 3 3 1 3 1 0 3 0 0 ... 1 0 1 0 0 0 1 0 0 1
1 0 3 3 4 3 1 0 2 3 1 ... 0 0 1 0 0 0 1 0 0 1
2 0 3 3 2 3 1 0 3 3 1 ... 1 0 1 0 0 0 1 0 0 1

3 rows × 300 columns

all_data['MiscFeature'].value_counts()  #
None    2810
Shed 95
Gar2 5
Othr 4
TenC 1
Name: MiscFeature, dtype: int64
get_feature_corr1('MiscFeature')
'''
有效数据太少,剔除该特征
'''

kaggle house price

'\n有效数据太少,剔除该特征\n'
get_feature_corr1('MiscVal')

kaggle house price

all_data['MiscVal'].value_counts()
"""
有效数据过少,剔除该特征
"""
'\n有效数据过少,剔除该特征\n'
all_data.drop(['MiscVal','MiscFeature'],axis=1,inplace=True)
MoSold and YrSold
"""
month sold,Year Sold
"""
get_feature_corr1('MoSold')

kaggle house price

get_feature_corr1('YrSold')

kaggle house price

all_data = pd.get_dummies(all_data, columns = ["MoSold"], prefix="MoSold")
all_data = pd.get_dummies(all_data,columns=['YrSold'],prefix='YrSold')
all_data.head(3)
3SsnPorch BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir EnclosedPorch ExterQual FireplaceQu Fireplaces ... MoSold_8 MoSold_9 MoSold_10 MoSold_11 MoSold_12 YrSold_2006 YrSold_2007 YrSold_2008 YrSold_2009 YrSold_2010
0 0 3 3 1 3 1 0 3 0 0 ... 0 0 0 0 0 0 0 1 0 0
1 0 3 3 4 3 1 0 2 3 1 ... 0 0 0 0 0 0 1 0 0 0
2 0 3 3 2 3 1 0 3 3 1 ... 0 1 0 0 0 0 0 1 0 0

3 rows × 313 columns

SaleType
"""
SaleType: Type of sale WD Warranty Deed - Conventional
CWD Warranty Deed - Cash
VWD Warranty Deed - VA Loan
New Home just constructed and sold
COD Court Officer Deed/Estate
Con Contract 15% Down payment regular terms
ConLw Contract Low Down payment and low interest
ConLI Contract Low Interest
ConLD Contract Low Down
Oth Other """
get_feature_corr1('SaleType')

kaggle house price

all_data['SaleType'] = all_data['SaleType'].map({'WD':"WD",'New':"New",'COD':"COD",'CWD':'Oth','ConLD':'Oth','ConLI':'Oth',
"ConLW":'Oth','Con':'Oth','Oth':'Oth'})
all_data= pd.get_dummies(all_data,columns=['SaleType'],prefix='SaleType')
all_data.head()
3SsnPorch BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir EnclosedPorch ExterQual FireplaceQu Fireplaces ... MoSold_12 YrSold_2006 YrSold_2007 YrSold_2008 YrSold_2009 YrSold_2010 SaleType_COD SaleType_New SaleType_Oth SaleType_WD
0 0 3 3 1 3 1 0 3 0 0 ... 0 0 0 1 0 0 0 0 0 1
1 0 3 3 4 3 1 0 2 3 1 ... 0 0 1 0 0 0 0 0 0 1
2 0 3 3 2 3 1 0 3 3 1 ... 0 0 0 1 0 0 0 0 0 1
3 0 3 4 1 2 1 272 2 4 1 ... 0 1 0 0 0 0 0 0 0 1
4 0 4 3 3 3 1 0 3 3 1 ... 1 0 0 1 0 0 0 0 0 1

5 rows × 316 columns

SaleCondition
"""
Condition of sale. """ get_feature_corr1('SaleCondition')

kaggle house price

all_data = pd.get_dummies(all_data, columns = ["SaleCondition"], prefix="SaleCondition")
all_data.head(3)
3SsnPorch BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir EnclosedPorch ExterQual FireplaceQu Fireplaces ... SaleType_COD SaleType_New SaleType_Oth SaleType_WD SaleCondition_Abnorml SaleCondition_AdjLand SaleCondition_Alloca SaleCondition_Family SaleCondition_Normal SaleCondition_Partial
0 0 3 3 1 3 1 0 3 0 0 ... 0 0 0 1 0 0 0 0 1 0
1 0 3 3 4 3 1 0 2 3 1 ... 0 0 0 1 0 0 0 0 1 0
2 0 3 3 2 3 1 0 3 3 1 ... 0 0 0 1 0 0 0 0 1 0

3 rows × 321 columns

目标值转换

  • 与分类算法不同,回归是用算法拟合连续值
  • 通常需要对目标值进行分布进行分析,机器学习的算法对于正态分布的数据一般都有很高的拟合度,如果目标值为偏正态分布,需要将目标值转化为正态分布
from scipy.stats import skew, norm
plt.subplots(figsize=(15,12))
g = sns.distplot(train['SalePrice'],fit=norm,label="Skewness:%.2f" % (train['SalePrice'].skew()))
g.legend(loc='best')
<matplotlib.legend.Legend at 0x12f5f5cc0>

kaggle house price

  • 目标变量为正偏态,可以是用numpy中的函数,将其转化
train["SalePrice"] = np.log1p(train["SalePrice"])
y_train = train["SalePrice"] #Check the new distribution
plt.subplots(figsize=(15,10))
g = sns.distplot(train['SalePrice'], fit=norm, label = "Skewness : %.2f"%(train['SalePrice'].skew()));
g = g.legend(loc="best")

kaggle house price

处理数据中偏态的特征
numeric_feats = all_data.dtypes[all_data.dtypes != "object"].index

# Check how skewed they are
skewed_feats = all_data[numeric_feats].apply(lambda x: skew(x.dropna())).sort_values(ascending=False) plt.subplots(figsize =(65, 20))
skewed_feats.plot(kind='bar');

kaggle house price


from scipy.special import boxcox1p skewness = skewed_feats[abs(skewed_feats) > 0.5] skewed_features = skewness.index
lam = 0.15
for feat in skewed_features:
all_data[feat] = boxcox1p(all_data[feat], lam) print(skewness.shape[0], "skewed numerical features have been Box-Cox transformed")
294 skewed numerical features have been Box-Cox transformed

准备模型训练的数据

train = all_data[:ntrain]
test = all_data[ntrain:]
print(train.shape)
print(test.shape)
(1456, 321)
(1459, 321)
y_train.shape
(1456,)
feature importance
import xgboost as xgb

model = xgb.XGBRegressor()
model.fit(train, y_train) # Sort feature importances from GBC model trained earlier
indices = np.argsort(model.feature_importances_)[::-1]
indices = indices[:75] # Visualise these with a barplot
plt.subplots(figsize=(20, 15))
g = sns.barplot(y=train.columns[indices], x = model.feature_importances_[indices], orient='h')
g.set_xlabel("Relative importance",fontsize=12)
g.set_ylabel("Features",fontsize=12)
g.tick_params(labelsize=9)
g.set_title("XGB feature importance");
/Users/aihuishou/anaconda3/envs/work/lib/python3.6/site-packages/xgboost/core.py:587: FutureWarning: Series.base is deprecated and will be removed in a future version
if getattr(data, 'base', None) is not None and \
/Users/aihuishou/anaconda3/envs/work/lib/python3.6/site-packages/xgboost/core.py:588: FutureWarning: Series.base is deprecated and will be removed in a future version
data.base is not None and isinstance(data, np.ndarray) \ [11:04:46] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.

kaggle house price

xgb_train = train.copy()
xgb_test = test.copy()
from sklearn.feature_selection import SelectFromModel xgb_feat_red = SelectFromModel(model,prefit=True)
# reduce estimation validation and test datasets
xgb_train = xgb_feat_red.transform(xgb_train)
xgb_test = xgb_feat_red.transform(xgb_test)
print('X_train: ', xgb_train.shape, '\nX_test: ', xgb_test.shape)
X_train:  (1456, 47)
X_test: (1459, 47)

from sklearn import model_selection X_train, X_test, Y_train, Y_test = model_selection.train_test_split(xgb_train, y_train, test_size=0.3, random_state=42) # X_train = predictor features for estimation dataset
# X_test = predictor variables for validation dataset
# Y_train = target variable for the estimation dataset
# Y_test = target variable for the estimation dataset print('X_train: ', X_train.shape, '\nX_test: ', X_test.shape, '\nY_train: ', Y_train.shape, '\nY_test: ', Y_test.shape)
X_train:  (1019, 47)
X_test: (437, 47)
Y_train: (1019,)
Y_test: (437,)
X_train
array([[0.73046315, 3.        , 0.73046315, ..., 0.        , 0.        ,
0. ],
[0.73046315, 3. , 0.73046315, ..., 0. , 0. ,
0. ],
[1.19431764, 2. , 0.73046315, ..., 0. , 0. ,
0. ],
...,
[1.8203341 , 3. , 0.73046315, ..., 0.73046315, 0. ,
0. ],
[0.73046315, 3. , 0.73046315, ..., 0. , 0. ,
0. ],
[1.54096276, 3. , 0.73046315, ..., 0. , 0. ,
0. ]])

训练不同的模型

# 从sklearn 导入不同的回归模型
from sklearn.linear_model import ElasticNet, Lasso, BayesianRidge, LassoLarsIC
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor, ExtraTreesRegressor
from sklearn.kernel_ridge import KernelRidge
import xgboost as xgb
print('Algorithm packages imported!')
Algorithm packages imported!
# Model selection packages used for sampling dataset and optimising parameters
from sklearn import model_selection
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score, train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import ShuffleSplit
print('Model selection packages imported!')
Model selection packages imported!
models = [KernelRidge(),ElasticNet(),Lasso(),GradientBoostingRegressor(),BayesianRidge(),LassoLarsIC(),RandomForestRegressor(),xgb.XGBRegressor()]
# 随机取样,其实可以使用正常的split,然后选择里面的shuffle = True
# https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
shuff =ShuffleSplit(n_splits=5,test_size=0.2,random_state=42)
# 创建一个数据框,用于保存模型的指标
columns = ['Name','Parameters','Train mean_squared_error','Test mean_squared_error']
before_model_compare = pd.DataFrame(columns=columns)
# 将模型的参数以及结果添加到DataFrame中
row_index=0
for alg in models:
model_name = alg.__class__.__name__
before_model_compare.loc[row_index,'Name'] = model_name
before_model_compare.loc[row_index,'Parameters'] = str(alg.get_params())
alg.fit(X_train,Y_train)
# for cross_validation but the results are negative,we need to convert it to postive,均方误差
training_results = np.sqrt((-cross_val_score(alg,X_train,Y_train,cv=shuff,scoring='neg_mean_squared_error')).mean())
test_results = np.sqrt(((Y_test-alg.predict(X_test))**2).mean())
before_model_compare.loc[row_index,"Train mean_squared_error"] = training_results*100
before_model_compare.loc[row_index,'Test mean_squared_error'] = test_results*100
row_index+=1
print(row_index,model_name,"trained>>>>") decimals = 3
before_model_compare['Train mean_squared_error'] = before_model_compare['Train mean_squared_error'].apply(lambda x:round(x,decimals))
before_model_compare['Test mean_squared_error'] = before_model_compare['Train mean_squared_error'].apply(lambda x:round(x,decimals))
before_model_compare
1 KernelRidge trained>>>>
2 ElasticNet trained>>>>
3 Lasso trained>>>>
4 GradientBoostingRegressor trained>>>>
5 BayesianRidge trained>>>>
6 LassoLarsIC trained>>>>
7 RandomForestRegressor trained>>>>
[12:04:14] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.
[12:04:14] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.
[12:04:14] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror. /Users/aihuishou/anaconda3/envs/work/lib/python3.6/site-packages/xgboost/core.py:587: FutureWarning: Series.base is deprecated and will be removed in a future version
if getattr(data, 'base', None) is not None and \
/Users/aihuishou/anaconda3/envs/work/lib/python3.6/site-packages/xgboost/core.py:587: FutureWarning: Series.base is deprecated and will be removed in a future version
if getattr(data, 'base', None) is not None and \
/Users/aihuishou/anaconda3/envs/work/lib/python3.6/site-packages/xgboost/core.py:587: FutureWarning: Series.base is deprecated and will be removed in a future version
if getattr(data, 'base', None) is not None and \
/Users/aihuishou/anaconda3/envs/work/lib/python3.6/site-packages/xgboost/core.py:587: FutureWarning: Series.base is deprecated and will be removed in a future version
if getattr(data, 'base', None) is not None and \
/Users/aihuishou/anaconda3/envs/work/lib/python3.6/site-packages/xgboost/core.py:587: FutureWarning: Series.base is deprecated and will be removed in a future version
if getattr(data, 'base', None) is not None and \ [12:04:14] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.
[12:04:14] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.
[12:04:14] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.
8 XGBRegressor trained>>>>
Name Parameters Train mean_squared_error Test mean_squared_error
0 KernelRidge {'alpha': 1, 'coef0': 1, 'degree': 3, 'gamma':... 31.424 31.424
1 ElasticNet {'alpha': 1.0, 'copy_X': True, 'fit_intercept'... 23.245 23.245
2 Lasso {'alpha': 1.0, 'copy_X': True, 'fit_intercept'... 28.008 28.008
3 GradientBoostingRegressor {'alpha': 0.9, 'criterion': 'friedman_mse', 'i... 12.381 12.381
4 BayesianRidge {'alpha_1': 1e-06, 'alpha_2': 1e-06, 'compute_... 11.118 11.118
5 LassoLarsIC {'copy_X': True, 'criterion': 'aic', 'eps': 2.... 11.818 11.818
6 RandomForestRegressor {'bootstrap': True, 'criterion': 'mse', 'max_d... 14.299 14.299
7 XGBRegressor {'base_score': 0.5, 'booster': 'gbtree', 'cols... 12.466 12.466
优化参数
  • 开始的时候,我们准备了不同模型简单的看了模型的评价以及训练结果
  • 实际上,这些模型都需要进一步的参数优化
  • 下一步需要是用GridSearch进行参数的调整
models = [KernelRidge(),ElasticNet(),Lasso(),GradientBoostingRegressor(),BayesianRidge(),LassoLarsIC(),RandomForestRegressor(),
xgb.XGBRegressor()]
KR_param_grid = {'alpha': [0.1], 'coef0': [100], 'degree': [1], 'gamma': [None], 'kernel': ['polynomial']}
EN_param_grid = {'alpha': [0.001], 'copy_X': [True], 'l1_ratio': [0.6], 'fit_intercept': [True], 'normalize': [False],
'precompute': [False], 'max_iter': [300], 'tol': [0.001], 'selection': ['random'], 'random_state': [None]}
LASS_param_grid = {'alpha': [0.0005], 'copy_X': [True], 'fit_intercept': [True], 'normalize': [False], 'precompute': [False],
'max_iter': [300], 'tol': [0.01], 'selection': ['random'], 'random_state': [None]}
GB_param_grid = {'loss': ['huber'], 'learning_rate': [0.1], 'n_estimators': [300], 'max_depth': [3],
'min_samples_split': [0.0025], 'min_samples_leaf': [5]}
BR_param_grid = {'n_iter': [200], 'tol': [0.00001], 'alpha_1': [0.00000001], 'alpha_2': [0.000005], 'lambda_1': [0.000005],
'lambda_2': [0.00000001], 'copy_X': [True]}
LL_param_grid = {'criterion': ['aic'], 'normalize': [True], 'max_iter': [100], 'copy_X': [True], 'precompute': ['auto'], 'eps': [0.000001]}
RFR_param_grid = {'n_estimators': [50], 'max_features': ['auto'], 'max_depth': [None], 'min_samples_split': [5], 'min_samples_leaf': [2]}
XGB_param_grid = {'max_depth': [3], 'learning_rate': [0.1], 'n_estimators': [300], 'booster': ['gbtree'], 'gamma': [0], 'reg_alpha': [0.1],
'reg_lambda': [0.7], 'max_delta_step': [0], 'min_child_weight': [1], 'colsample_bytree': [0.5], 'colsample_bylevel': [0.2],
'scale_pos_weight': [1]}
params_grid = [KR_param_grid, EN_param_grid, LASS_param_grid, GB_param_grid, BR_param_grid, LL_param_grid, RFR_param_grid, XGB_param_grid] after_model_compare = pd.DataFrame(columns=columns)
row_index= 0 for alg in models:
gs_alg = GridSearchCV(alg,param_grid=params_grid[0],cv=shuff,scoring='neg_mean_squared_error',n_jobs=-1)
params_grid.pop(0) model_name = alg.__class__.__name__
after_model_compare.loc[row_index,'Name'] = model_name
gs_alg.fit(X_train,Y_train)
gs_best=gs_alg.best_estimator_
after_model_compare.loc[row_index,"Parameters"] = str(gs_alg.best_params_)
after_training_results = np.sqrt(-gs_alg.best_score_)
after_test_results = np.sqrt((Y_test-gs_alg.predict(X_test)**2).mean())
after_model_compare.loc[row_index,"Train mean_squared_error"] = after_training_results*100
after_model_compare.loc[row_index,'Test mean_squared_error']= after_test_results*100
row_index+=1
print(row_index,model_name,"trained>>>>>") decimals = 3
after_model_compare['Train mean_squared_error'] = after_model_compare['Train mean_squared_error'].apply(lambda x:round(x,decimals))
after_model_compare['Test mean_squared_error'] = after_model_compare['Train mean_squared_error'].apply(lambda x:round(x,decimals))
after_model_compare
/Users/aihuishou/anaconda3/envs/work/lib/python3.6/site-packages/ipykernel_launcher.py:33: RuntimeWarning: invalid value encountered in sqrt
/Users/aihuishou/anaconda3/envs/work/lib/python3.6/site-packages/ipykernel_launcher.py:33: RuntimeWarning: invalid value encountered in sqrt
/Users/aihuishou/anaconda3/envs/work/lib/python3.6/site-packages/ipykernel_launcher.py:33: RuntimeWarning: invalid value encountered in sqrt 1 KernelRidge trained>>>>>
2 ElasticNet trained>>>>>
3 Lasso trained>>>>> /Users/aihuishou/anaconda3/envs/work/lib/python3.6/site-packages/ipykernel_launcher.py:33: RuntimeWarning: invalid value encountered in sqrt
/Users/aihuishou/anaconda3/envs/work/lib/python3.6/site-packages/ipykernel_launcher.py:33: RuntimeWarning: invalid value encountered in sqrt
/Users/aihuishou/anaconda3/envs/work/lib/python3.6/site-packages/ipykernel_launcher.py:33: RuntimeWarning: invalid value encountered in sqrt 4 GradientBoostingRegressor trained>>>>>
5 BayesianRidge trained>>>>>
6 LassoLarsIC trained>>>>> /Users/aihuishou/anaconda3/envs/work/lib/python3.6/site-packages/ipykernel_launcher.py:33: RuntimeWarning: invalid value encountered in sqrt
/Users/aihuishou/anaconda3/envs/work/lib/python3.6/site-packages/xgboost/core.py:587: FutureWarning: Series.base is deprecated and will be removed in a future version
if getattr(data, 'base', None) is not None and \ 7 RandomForestRegressor trained>>>>>
[19:23:22] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.
8 XGBRegressor trained>>>>>
Name Parameters Train mean_squared_error Test mean_squared_error
0 KernelRidge {'alpha': 0.1, 'coef0': 100, 'degree': 1, 'gam... 11.140 11.140
1 ElasticNet {'alpha': 0.001, 'copy_X': True, 'fit_intercep... 11.234 11.234
2 Lasso {'alpha': 0.0005, 'copy_X': True, 'fit_interce... 11.203 11.203
3 GradientBoostingRegressor {'learning_rate': 0.1, 'loss': 'huber', 'max_d... 11.966 11.966
4 BayesianRidge {'alpha_1': 1e-08, 'alpha_2': 5e-06, 'copy_X':... 11.118 11.118
5 LassoLarsIC {'copy_X': True, 'criterion': 'aic', 'eps': 1e... 11.818 11.818
6 RandomForestRegressor {'max_depth': None, 'max_features': 'auto', 'm... 13.735 13.735
7 XGBRegressor {'booster': 'gbtree', 'colsample_bylevel': 0.2... 11.964 11.964

stacking method

  • 准备一系列的算法模型
  • 将train训练数据分割为训练数据和验证数据(X_trian,Y_train,X_test,Y_test)
  • 在X_train数据集中进行算法拟合,然后将训练出来的模型去拟合X_test(验证集),将模型拟合出的验证集的结果和实际的Y_test组成的新的训练数据(new_train datasets)
  • 将训练出来的模型去拟合test数据集,得到每个模型预测的结果,组成醒的test数据集,new_test dataset
  • 用一个相对简单或者使用不同的模型(meta-model),比如说lasso,将新的训练进行拟合,然后将拟合后的模型预测新的测试集new_test_dataset,得到新的模型
  • 将新的模型去拟合新的测试集(new_test_dataset),得到预测的结果

    kaggle house price
models  = [KernelRidge(),ElasticNet(),Lasso(),GradientBoostingRegressor(),BayesianRidge(),LassoLarsIC(),RandomForestRegressor(),xgb.XGBRegressor()]
names = ['KernelRidge','ElasticNet','Lasso','GradientBoostingRegressor','BayesianRidge','LassoLarsIC','RandomForest','XGBoost']
params_grid = [KR_param_grid, EN_param_grid, LASS_param_grid, GB_param_grid, BR_param_grid, LL_param_grid, RFR_param_grid, XGB_param_grid]
stacked_validation_train = pd.DataFrame()
stacked_test_train = pd.DataFrame() row_index= 0 for alg in models:
gs_alg = GridSearchCV(alg,param_grid=params_grid[0],cv=shuff,scoring='neg_mean_squared_error',n_jobs=-1)
params_grid.pop(0)
gs_alg.fit(X_train,Y_train)
gs_best = gs_alg.best_estimator_
stacked_validation_train.insert(loc= row_index,column=names[0],value=gs_best.predict(X_test))
""" dataFrme insert (loc 表示的是列的序号,column 列名,value 插入的内容)"""
print(row_index+1,alg.__class__.__name__,"将验证集的预测的结果堆砌,组成新的训练集")
stacked_test_train.insert(loc=row_index,column=names[0],value=gs_best.predict(xgb_test))
print(row_index+1,alg.__class__.__name__,"将测试集的预测的结果堆砌,组成新的测试集")
print("---"*50)
names.pop(0)
row_index+=1 print("第一层数据处理完成,新的训练集与测试集完成")
1 KernelRidge 将验证集的预测的结果堆砌,组成新的训练集
1 KernelRidge 将测试集的预测的结果堆砌,组成新的测试集
------------------------------------------------------------------------------------------------------------------------------------------------------
2 ElasticNet 将验证集的预测的结果堆砌,组成新的训练集
2 ElasticNet 将测试集的预测的结果堆砌,组成新的测试集
------------------------------------------------------------------------------------------------------------------------------------------------------
3 Lasso 将验证集的预测的结果堆砌,组成新的训练集
3 Lasso 将测试集的预测的结果堆砌,组成新的测试集
------------------------------------------------------------------------------------------------------------------------------------------------------
4 GradientBoostingRegressor 将验证集的预测的结果堆砌,组成新的训练集
4 GradientBoostingRegressor 将测试集的预测的结果堆砌,组成新的测试集
------------------------------------------------------------------------------------------------------------------------------------------------------
5 BayesianRidge 将验证集的预测的结果堆砌,组成新的训练集
5 BayesianRidge 将测试集的预测的结果堆砌,组成新的测试集
------------------------------------------------------------------------------------------------------------------------------------------------------
6 LassoLarsIC 将验证集的预测的结果堆砌,组成新的训练集
6 LassoLarsIC 将测试集的预测的结果堆砌,组成新的测试集
------------------------------------------------------------------------------------------------------------------------------------------------------
7 RandomForestRegressor 将验证集的预测的结果堆砌,组成新的训练集
7 RandomForestRegressor 将测试集的预测的结果堆砌,组成新的测试集
------------------------------------------------------------------------------------------------------------------------------------------------------
[15:23:01] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.
8 XGBRegressor 将验证集的预测的结果堆砌,组成新的训练集
8 XGBRegressor 将测试集的预测的结果堆砌,组成新的测试集
------------------------------------------------------------------------------------------------------------------------------------------------------
第一层数据处理完成,新的训练集与测试集完成 /Users/aihuishou/anaconda3/envs/work/lib/python3.6/site-packages/xgboost/core.py:587: FutureWarning: Series.base is deprecated and will be removed in a future version
if getattr(data, 'base', None) is not None and \
print(stacked_validation_train.shape)
stacked_validation_train.head()
# Y_test的数据结果
(437, 8)

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
KernelRidge ElasticNet Lasso GradientBoostingRegressor BayesianRidge LassoLarsIC RandomForest XGBoost
0 12.096814 12.095574 12.095347 12.103610 12.095675 12.104932 12.170897 12.084927
1 11.952395 11.966939 11.964576 12.027570 11.957859 11.999328 12.066678 12.071651
2 11.798390 11.800390 11.807569 11.842686 11.807968 11.787126 11.880778 11.789903
3 11.834224 11.814334 11.820662 11.806835 11.840026 11.837654 11.755137 11.753889
4 11.287412 11.267859 11.271162 11.150576 11.289689 11.290524 11.328786 11.278980
print(stacked_test_train.shape)
stacked_test_train.head()
(1459, 8)
KernelRidge ElasticNet Lasso GradientBoostingRegressor BayesianRidge LassoLarsIC RandomForest XGBoost
0 11.655653 11.666206 11.661235 11.717153 11.664298 11.639410 11.735618 11.754628
1 12.033653 12.042914 12.039875 11.950150 12.032724 12.007921 11.956780 11.985191
2 12.121196 12.121925 12.124266 12.138572 12.125334 12.072644 12.097413 12.115376
3 12.194246 12.200128 12.201113 12.166538 12.196015 12.143436 12.095009 12.139894
4 12.171520 12.180859 12.179168 12.145913 12.167523 12.168576 12.178091 12.176064
stacked_validation_train.drop('Lasso',axis=1,inplace=True)
stacked_test_train.drop('Lasso',axis=1,inplace=True)
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import RobustScaler meta_model = make_pipeline(RobustScaler(),Lasso(alpha=0.00001,copy_X=True,fit_intercept=True,normalize=False,precompute=False,
max_iter=10000,tol=0.0001,selection='random',random_state=42))
meta_model.fit(stacked_validation_train,Y_test)
meta_model_pred= np.expm1(meta_model.predict(stacked_test_train))
print("meta_model 完成训练,并预测测试集的数据")
meta_model 完成训练,并预测测试集的数据

/Users/aihuishou/anaconda3/envs/work/lib/python3.6/site-packages/sklearn/linear_model/coordinate_descent.py:475: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 1.7538551527086552, tolerance: 0.006483051719467419
positive)
models = [KernelRidge(), ElasticNet(), Lasso(), GradientBoostingRegressor(), BayesianRidge(), LassoLarsIC(), RandomForestRegressor(), xgb.XGBRegressor()]
names = ['KernelRidge', 'ElasticNet', 'Lasso', 'Gradient Boosting', 'Bayesian Ridge', 'Lasso Lars IC', 'Random Forest', 'XGBoost']
params_grid = [KR_param_grid, EN_param_grid, LASS_param_grid, GB_param_grid, BR_param_grid, LL_param_grid, RFR_param_grid, XGB_param_grid]
final_predictions = pd.DataFrame() row_index=0 for alg in models: gs_alg = GridSearchCV(alg, param_grid = params_grid[0], cv = shuff, scoring = 'neg_mean_squared_error', n_jobs=-1)
params_grid.pop(0) gs_alg.fit(stacked_validation_train, Y_test)
gs_best = gs_alg.best_estimator_
final_predictions.insert(loc = row_index, column = names[0], value = np.expm1(gs_best.predict(stacked_test_train)))
print(row_index+1, alg.__class__.__name__, 'final results predicted added to table...')
names.pop(0) row_index+=1 print("-"*50)
print("已经完成")
final_predictions.head()
1 KernelRidge final results predicted added to table...
2 ElasticNet final results predicted added to table...
3 Lasso final results predicted added to table...
4 GradientBoostingRegressor final results predicted added to table...
5 BayesianRidge final results predicted added to table...
6 LassoLarsIC final results predicted added to table...
7 RandomForestRegressor final results predicted added to table...
[18:03:42] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.
8 XGBRegressor final results predicted added to table...
--------------------------------------------------
已经完成 /Users/aihuishou/anaconda3/envs/work/lib/python3.6/site-packages/xgboost/core.py:587: FutureWarning: Series.base is deprecated and will be removed in a future version
if getattr(data, 'base', None) is not None and \
KernelRidge ElasticNet Lasso Gradient Boosting Bayesian Ridge Lasso Lars IC Random Forest XGBoost
0 120698.786728 121126.968875 120569.541877 119545.552352 121817.672344 121618.593011 120774.731602 117987.320312
1 162778.261755 162293.616103 163198.661456 154034.245333 162888.953970 162663.194168 154944.085742 154422.265625
2 184187.690046 183822.395933 184145.902661 181996.954345 185167.984485 184643.383928 181824.224304 174336.687500
3 193128.541814 192388.040730 193035.580999 195110.109361 193760.580424 193069.794744 188563.541259 181933.593750
4 192957.823204 192839.290437 193289.070140 192292.299199 192910.466862 192890.725826 190770.891456 192144.093750
ensemble = meta_model_pred*(1/10) + final_predictions['XGBoost']*(1.5/10) + final_predictions['Gradient Boosting']*(2/10) + final_predictions['Bayesian Ridge']*(1/10) + final_predictions['Lasso']*(1/10) + final_predictions['KernelRidge']*(1/10) + final_predictions['Lasso Lars IC']*(1/10) + final_predictions['Random Forest']*(1.5/10)

submission = pd.DataFrame()
test1 = pd.read_csv('test.csv',index_col=False)
test_ID = test1['Id']
submission['Id'] = test_ID
submission['SalePrice'] = ensemble
submission.to_csv('final_submission.csv',index=False)
print("Submission file, created!")
Submission file, created!