Sereja has a sequence that consists of n positive integers, a1, a2, ..., an.
First Sereja took a piece of squared paper and wrote all distinct non-empty non-decreasing subsequences of sequence a. Then for each sequence written on the squared paper, Sereja wrote on a piece of lines paper all sequences that do not exceed it.
A sequence of positive integers x = x1, x2, ..., xr doesn't exceed a sequence of positive integers y = y1, y2, ..., yr, if the following inequation holds: x1 ≤ y1, x2 ≤ y2, ..., xr ≤ yr.
Now Sereja wonders, how many sequences are written on the lines piece of paper. Help Sereja, find the required quantity modulo 1000000007 (109 + 7).
Input
The first line contains integer n (1 ≤ n ≤ 105). The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 106).
Output
In the single line print the answer to the problem modulo 1000000007 (109 + 7).
Examples
1
42
42
3
1 2 2
13
5
1 2 3 4 5
719 题意:
原题意是这样的:
看第二组样例:
3
1 2 2
首先,写出所有非空的,非严格递增的,不同的子序列:
1
2
1 2
2 2
1 2 2
然后写出小于这些子序列的数组,问数组个数
~ 1
1 ~2
1
2 ~ 1 2
1 1
1 2 ~2 2
1 1
1 2
2 1
2 2 ~1 2 2
1 1 1
1 1 2
1 2 1
1 2 2 这样一共写出了13个数组。
显而易见的,每个子序列可以写出来的数组个数,其实就是子序列的数字之积。
思路:
dp[num[i]]表示子序列以num[i]为结尾的答案。
然后就按照输入顺序进行更新。
dp[num[i]]=(dp[1]到dp[num[i]]的和)*num[i]+num[i];
前半部分表示接在其他数字后面,用树状数组优化,后半部分表示自己单独出现
当然还要去重,就是1 2 2,第一个2会接在1后面,第二个2也接在1后面,就会重复。
用一个pre记录之前的那个dp[2],正常更新dp[2]再减去pre[2]就行了。
#include<iostream>
#include<algorithm>
#include<vector>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<ctime>
#define fuck(x) cout<<#x<<" = "<<x<<endl;
#define debug(a,i) cout<<#a<<"["<<i<<"] = "<<a[i]<<endl;
#define ls (t<<1)
#define rs ((t<<1)|1)
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = ;
const int maxm = ;
const int inf = 2.1e9;
const ll Inf = ;
const int mod = ;
const double eps = 1e-;
const double pi = acos(-); int num[maxn];
ll dp[maxm];
ll a[maxm];
ll pre[maxm];
int lowbit(int x){
return x&(-x);
} void update(int pos,ll num){
while (pos<maxm){
a[pos]+=num;
a[pos]%=mod;
pos+=lowbit(pos);
}
} ll query(int pos){
ll ans=;
while (pos){
ans+=a[pos];
ans%=mod;
pos-=lowbit(pos);
}
return ans;
} int main()
{
// ios::sync_with_stdio(false);
// freopen("in.txt","r",stdin); int n;
scanf("%d",&n);
for(int i=;i<=n;i++){
scanf("%d",&num[i]);
}
for(int i=;i<=n;i++){
ll ans=query(num[i]);
ll tmp=ans*num[i]+num[i];
dp[num[i]]+=ans*num[i]+num[i];
dp[num[i]]%=mod;
dp[num[i]]-=pre[num[i]];
tmp=((tmp-pre[num[i]])+mod)%mod;
dp[num[i]]=(dp[num[i]]+mod)%mod;
pre[num[i]]=dp[num[i]];
update(num[i],tmp);
// debug(dp,num[i]);
}
ll ans=;
for(int i=;i<=maxm;i++){
ans+=dp[i];
ans%=mod;
}
printf("%lld\n",ans); return ;
}