Phone Call
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Others)
Total Submission(s): 156 Accepted Submission(s): 67
The Bytetown's phone line network consists of m different lines. The i-th line can be expressed as 5 integers ai,bi,ci,di,wi, which means for every two different houses u and v from set S(ai,bi)∪S(ci,di), u and v can have a phone call costing wi dollars.
Picture from Wikimedia Commons
Little Q is now planning to hold a big party in his house, so he wants to make as many as possible people known. Everyone known the message can make several phone calls to others to spread the message, but nobody can leave his house.
Please write a program to figure out the maximum number of people that can join the party and the minimum total cost to reach that maximum number. Little Q should be counted in the answer.
In each test case, there are 2 integers n,m(1≤n,m≤100000) in the first line, denoting the number of houses and phone lines.
For the next n−1 lines, each line contains two integers u and v, denoting a bidirectional edge between node u and v.
For the next m lines, each line contains 5 integers ai,bi,ci,di,wi(1≤ai,bi,ci,di≤n,1≤wi≤109), denoting a phone line.
5 2
1 2
1 3
2 4
2 5
1 3 2 4 100
2 2 4 2 10
Step 1 : 1 make a phone call to 2 using line 1, the cost is 100. Step 2 : 1 make a phone call to 3 using line 1, the cost is 100. Step 3 : 2 make a phone call to 4 using line 2, the cost is 10.
#include <bits/stdc++.h>
#define inf 0x3f3f3f3f
#define met(a,b) memset(a,b,sizeof a)
#define pb push_back
#define mp make_pair
#define inf 0x3f3f3f3f
using namespace std;
typedef long long ll;
const int N = 1e5+;;
const int M = ;
const int mod = 1e9+;
const double pi= acos(-1.0);
typedef pair<int,int>pii;
int n,m,T;
int parent[N],up[N],cnt[N];
int dep[N],fa[N][];
ll w[N];
vector<int>edg[N];
struct man{
int a,b,c,d;
ll cost;
bool operator < (const man &e)const {
return cost<e.cost;
}
}q[N];
int findFa(int x){
return parent[x]==x?x:parent[x]=findFa(parent[x]);
}
int findUp(int x){
return up[x]==x?x:up[x]=findUp(up[x]);
}
void dfs(int u,int f){
fa[u][]=f;
for(int i=;i<;i++){
fa[u][i]=fa[fa[u][i-]][i-];
}
for(int v : edg[u]){
if(v==f)continue;
dep[v]=dep[u]+;
dfs(v,u);
}
}
int LCA(int u,int v){
int U=u,V=v;
if(dep[u]<dep[v])swap(u,v);
for(int i=;i>=;i--){
if(dep[fa[u][i]]>=dep[v]){
u=fa[u][i];
}
}
if(u==v)return (u);
for(int i=;i>=;i--){
if(fa[u][i]!=fa[v][i]){
u=fa[u][i];v=fa[v][i];
}
}
return (fa[u][]);
}
void Union(int x,int y,ll cost){
x=findFa(x);y=findFa(y);
if(x==y)return;
parent[x]=y;
cnt[y]+=cnt[x];
w[y]+=w[x]+cost;
}
void merge(int u,int v,ll cost){
while(){
u=findUp(u);
if(dep[u]<=dep[v])return;
Union(u,fa[u][],cost);
up[u]=fa[u][];
}
}
void solve(man s){
int lca=LCA(s.a,s.b);
merge(s.a,lca,s.cost);
merge(s.b,lca,s.cost);
lca=LCA(s.c,s.d);
merge(s.c,lca,s.cost);
merge(s.d,lca,s.cost);
Union(s.a,s.c,s.cost);
}
int main(){
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);met(fa,);
for(int i=;i<=n;i++)parent[i]=up[i]=i,cnt[i]=,w[i]=,edg[i].clear();
for(int i=,u,v;i<n;i++){
scanf("%d%d",&u,&v);
edg[u].pb(v);edg[v].pb(u);
}
for(int i=;i<m;i++){
scanf("%d%d%d%d%lld",&q[i].a,&q[i].b,&q[i].c,&q[i].d,&q[i].cost);
}
sort(q,q+m);
dep[]=;dfs(,);
for(int i=;i<m;i++)solve(q[i]);
printf("%d %lld\n",cnt[findFa()],w[findFa()]);
}
}