6.Spark streaming技术内幕 : Job动态生成原理与源码解析

时间:2022-07-11 07:18:55

原创文章,转载请注明:转载自 周岳飞博客(http://www.cnblogs.com/zhouyf/)  



Spark streaming 程序的运行过程是将DStream的操作转化成RDD的操作,Spark Streaming 和 Spark Core 的关系如下图(图片来自spark官网)
6.Spark streaming技术内幕 : Job动态生成原理与源码解析
Spark Streaming 会按照程序设定的时间间隔不断动态生成Job来处理输入数据,这里的Job生成是指将Spark Streaming 的程序翻译成Spark内核的RDD操作,翻译的过程并不会触发Job的运行,Spark Streaming 会将翻译的处理逻辑封装在Job对象中,最后会将Job提交到集群上运行。这就是Spark Streaming 运行的基本过程。下面详细介绍Job动态生成和提交过程。

首先,当SparkStreaming的start方法调用后,整个Spark Streaming 程序开始运行,按照指定的时间间隔生成Job并提交给集群运行,在生成Job的工程中主要核心对象有
    1.JobScheduler  
    2.JobGenerator
    3.DStreamGraph
    4.DStream
其中, JobScheduler 负责启动JobGenerator生成Job,并提交生成的Job到集群运行,这里的Job不是在spark core 中提到的job,它只是作业运行的代码模板,是逻辑级别的,可以类比java线程中的Runnable接口实现,不是真正运行的作业, 它封装了由DStream转化而来的RDD操作.JobGenerator负责定时调用DStreamingGraph的generateJob方法生成Job和清理Dstream的元数据, DStreamGraph持有构成DStream图的所有DStream对象,并调用DStream的generateJob方法生成具体Job对象.DStream生成最终的Job交给JobScheduler 调度执行。整体过程如下图所示:

6.Spark streaming技术内幕 : Job动态生成原理与源码解析

原创文章,转载请注明:转载自 周岳飞博客(http://www.cnblogs.com/zhouyf/)

下面结合源码分析每一步过程 (源码中黄色背景部分为核心逻辑代码,例如 : scheduler.start() ) :
首先,StreamingContext起动时调用start方法
  1. try {
  2. validate()
  3. // Start the streaming scheduler in a new thread, so that thread local properties
  4. // like call sites and job groups can be reset without affecting those of the
  5. // current thread.
  6. ThreadUtils.runInNewThread("streaming-start") {
  7. sparkContext.setCallSite(startSite.get)
  8. sparkContext.clearJobGroup()
  9. sparkContext.setLocalProperty(SparkContext.SPARK_JOB_INTERRUPT_ON_CANCEL, "false")
  10. savedProperties.set(SerializationUtils.clone(
  11. sparkContext.localProperties.get()).asInstanceOf[Properties])
  12. scheduler.start()
  13. }
  14. state = StreamingContextState.ACTIVE
  15. } catch {
  16. case NonFatal(e) =>
  17. logError("Error starting the context, marking it as stopped", e)
  18. scheduler.stop(false)
  19. state = StreamingContextState.STOPPED
  20. throw e
  21. }

其中调用了scheduler的start方法,此处的scheduler 就是 org.apache.spark.streaming.scheduler.JobScheduler 对象,
StreamingContext持有org.apache.spark.streaming.scheduler.JobScheduler对象的引用。
下面看一下JobScheduler的start方法:

  1. eventLoop = new EventLoop[JobSchedulerEvent]("JobScheduler") {
  2. override protected def onReceive(event: JobSchedulerEvent): Unit = processEvent(event)
  3. override protected def onError(e: Throwable): Unit = reportError("Error in job scheduler", e)
  4. }
  5. eventLoop.start()
  6. // attach rate controllers of input streams to receive batch completion updates
  7. for {
  8. inputDStream <- ssc.graph.getInputStreams
  9. rateController <- inputDStream.rateController
  10. } ssc.addStreamingListener(rateController)
  11. listenerBus.start()
  12. receiverTracker = new ReceiverTracker(ssc)
  13. inputInfoTracker = new InputInfoTracker(ssc)
  14. executorAllocationManager = ExecutorAllocationManager.createIfEnabled(
  15. ssc.sparkContext,
  16. receiverTracker,
  17. ssc.conf,
  18. ssc.graph.batchDuration.milliseconds,
  19. clock)
  20. executorAllocationManager.foreach(ssc.addStreamingListener)
  21. receiverTracker.start()
  22. jobGenerator.start()
  23. executorAllocationManager.foreach(_.start())
  24. logInfo("Started JobScheduler")

可以看到JobScheduler调用了jobGeneratorstart方法和eventLoop的start方法,eventLoop用来接收JobSchedulerEvent消息,并交给processEvent函数进行处理
代码如下:
  1. private def processEvent(event: JobSchedulerEvent) {
  2. try {
  3. event match {
  4. case JobStarted(job, startTime) => handleJobStart(job, startTime)
  5. case JobCompleted(job, completedTime) => handleJobCompletion(job, completedTime)
  6. case ErrorReported(m, e) => handleError(m, e)
  7. }
  8. } catch {
  9. case e: Throwable =>
  10. reportError("Error in job scheduler", e)
  11. }
  12. }

 可以看到JobScheduler中的eventLoop只处理JobStarted,JobCompleted和ErrorReported 三类消息,这三类消息的处理不是Job动态生成的核心逻辑代码先略过,(注意:后面JobGenerator中也有个eventLoop不要和这里的eventLoop混淆。)
JobGenerator的start方法首先new了一个EventLoop对象eventLoop,并复写onReceive(),将收到的JobGeneratorEvent 消息交给 processEvent 方法处理.源码如下:

  1. /** Start generation of jobs */
    def start(): Unit = synchronized {
    if (eventLoop != null) return // generator has already been started // Call checkpointWriter here to initialize it before eventLoop uses it to avoid a deadlock.
    // See SPARK-10125
    checkpointWriter eventLoop = new EventLoop[JobGeneratorEvent]("JobGenerator") {
    override protected def onReceive(event: JobGeneratorEvent): Unit = processEvent(event) override protected def onError(e: Throwable): Unit = {
    jobScheduler.reportError("Error in job generator", e)
    }
    }
    eventLoop.start() if (ssc.isCheckpointPresent) {
    restart()
    } else {
    startFirstTime()
    }
    }
JobGenerator创建了eventLoop对象之后调用该对象的start方法,启动监听进程,准备接收JobGeneratorEvent类型消息交给processEvent函数处理,然后调用了startFirstTime方法,该方法启动DStreamGraph和定时器,定时器启动后根据程序设定的时间间隔给eventLoop对象发送GenerateJobs消息,如下图:

6.Spark streaming技术内幕 : Job动态生成原理与源码解析
原创文章,转载请注明:转载自 周岳飞博客(http://zhou-yuefei.iteye.com/)


eventLoop对象收到 GenerateJobs 消息交个processEvent方法处理,processEvent收到该消息,调用generateJobs方法处理,源码如下:

  1. /** Generate jobs and perform checkpoint for the given `time`. */
  2. private def generateJobs(time: Time) {
  3. // Checkpoint all RDDs marked for checkpointing to ensure their lineages are
  4. // truncated periodically. Otherwise, we may run into stack overflows (SPARK-6847).
  5. ssc.sparkContext.setLocalProperty(RDD.CHECKPOINT_ALL_MARKED_ANCESTORS, "true")
  6. Try {
  7. jobScheduler.receiverTracker.allocateBlocksToBatch(time) // allocate received blocks to batch
  8. graph.generateJobs(time) // generate jobs using allocated block
  9. } match {
  10. case Success(jobs) =>
  11. val streamIdToInputInfos = jobScheduler.inputInfoTracker.getInfo(time)
  12. jobScheduler.submitJobSet(JobSet(time, jobs, streamIdToInputInfos))
  13. case Failure(e) =>
  14. jobScheduler.reportError("Error generating jobs for time " + time, e)
  15. }
  16. eventLoop.post(DoCheckpoint(time, clearCheckpointDataLater = false))
  17. }

JobGenerator中的generateJobs方法主要关注两行代码,首先调用graph的generateJobs方法,给方法返回Success(jobs) 或者 Failure(e),其中的jobs就是该方法返回的Job对象集合,如果Job创建成功,再调用JobScheduler的submitJobSet方法将job提交给集群执行。
首先分析Job对象的产生,DStreamGraph 的start方法源码:
  1. def generateJobs(time: Time): Seq[Job] = {
  2. logDebug("Generating jobs for time " + time)
  3. val jobs = this.synchronized {
  4. outputStreams.flatMap { outputStream =>
  5. val jobOption = outputStream.generateJob(time)
  6. jobOption.foreach(_.setCallSite(outputStream.creationSite))
  7. jobOption
  8. }
  9. }
  10. logDebug("Generated " + jobs.length + " jobs for time " + time)
  11. jobs
  12. }

DStreamGraph 的start方法源码调用了outputStream对象的generateJob方法,ForeachDStream重写了该方法:
ForeachDStream的generateJob 将用户编写的DStream处理函数封装在jobFunc中,并将其传入Job对象,至此Job的生成。
接下来分析Job提交过程,JobScheduler负责Job的提交,核心代码在submitJobSet方法中:

  1. def submitJobSet(jobSet: JobSet) {
  2. if (jobSet.jobs.isEmpty) {
  3. logInfo("No jobs added for time " + jobSet.time)
  4. } else {
  5. listenerBus.post(StreamingListenerBatchSubmitted(jobSet.toBatchInfo))
  6. jobSets.put(jobSet.time, jobSet)
  7. jobSet.jobs.foreach(job => jobExecutor.execute(new JobHandler(job)))
  8. logInfo("Added jobs for time " + jobSet.time)
  9. }
  10. }

其中jobExecutor对象是一个线程池,JobHandler实现了Runnable接口,在JobHandler 的run方法中会调用传入的job对象的run方法。

疑问:Job的run方法执行是如何触发RDD的Action操作从而出发job的真正运行的呢?我们下次再具体分析,请随时关注博客更新!

原创文章,转载请注明:转载自 周岳飞博客(http://www.cnblogs.com/zhouyf/)