Search a 2D Matrix II
Write an efficient algorithm that searches for a value in an m x n matrix, return the occurrence of it.
This matrix has the following properties:
- Integers in each row are sorted from left to right.
- Integers in each column are sorted from up to bottom.
- No duplicate integers in each row or column.
Example
Consider the following matrix:
[
[1, 3, 5, 7],
[2, 4, 7, 8],
[3, 5, 9, 10]
]
Given target = 3
, return 2
.
分析:
因为数组里的数有上面三个特性,所以我们可以从左下角开始找。如果当前值比target大,明显往上走,比target小,往右走,如果一样斜上走。Time complexity: (O(m + n)) (m = matrix.length, n = matrix[0].length)
public class Solution {
public int searchMatrix(int[][] matrix, int target) {
// check corner case
if (matrix == null || matrix.length == 0 || matrix[].length == 0) {
return ;
}
// from bottom left to top right
int x = matrix.length - ;
int y = ;
int count = ; while (x >= && y < matrix[].length) {
if (matrix[x][y] < target) {
y++;
} else if (matrix[x][y] > target) {
x--;
} else {
count++;
x--;
y++;
}
}
return count; }
}
Search a 2D Matrix I
Write an efficient algorithm that searches for a value in an mx n matrix.
This matrix has the following properties:
- Integers in each row are sorted from left to right.
- The first integer of each row is greater than the last integer of the previous row.
Example
Consider the following matrix:
[
[1, 3, 5, 7],
[10, 11, 16, 20],
[23, 30, 34, 50]
]
Given target = 3
, return true
.
分析:
根据数组的特点,我们需要找出一个大范围(row),然后再确定小范围。
public class Solution {
public boolean searchMatrix(int[][] matrix, int target) {
if (matrix == null || matrix.length == || matrix[].length == ) return false;
int rowCount = matrix.length, colCount = matrix[].length;
if (matrix[][] > target || matrix[rowCount - ][colCount - ] < target) return false; int row = getRowNumber(matrix, target);
int column = getColumnNumber(matrix, row, target); return matrix[row][column] == target; } public int getRowNumber(int[][] matrix, int target) {
int start = , end = matrix.length - , width = matrix[].length;
while (start <= end) {
int mid = start + (end - start) / ;
if (matrix[mid][width - ] == target) {
return mid;
} else if (matrix[mid][width - ] > target) {
end = mid - ;
} else {
start = mid + ;
}
}
return start;
} public int getColumnNumber(int[][] matrix, int row, int target) {
int start = , end = matrix[].length; while (start <= end) {
int mid = start + (end - start) / ;
if (matrix[row][mid] == target) {
return mid;
} else if (matrix[row][mid] > target) {
end = mid - ;
} else {
start = mid + ;
}
}
return start;
}
}