python学习笔记16(错误、异常)

时间:2022-10-01 07:17:12

一、什么是错误,什么是异常

错误是指在执行代码过程中发生的事件,它中断或干扰代码的正常流程并创建异常对象。当错误中断流程时,该程序将尝试寻找异常处理程序(一段告诉程序如何对错误做出响应的代码),以帮助程序恢复流程。换句话说,错误是一个事件,而异常是该事件创建的对象

当使用短语“产生异常”时,表示存在问题的方法发生错误,并创建异常对象(包含该错误的信息及发生的时间和位置)来响应该错误。导致出现错误和随后异常的因素包括用户错误、资源失败和编程逻辑失败。这些错误与代码实现特定任务的方法有关,而与该任务的目的无关。

如果不进行异常处理,即不对错误做出响应,程序的健壮性就会大打折扣,甚至无法保证正常运行,所以必须要进行异常处理。

在项目开发中,异常处理是不可或缺的。异常处理帮助人们debug,通过更加丰富的信息,让人们更容易找到bug的所在。异常处理还可以提高程序的容错性。

二、python中的异常

在Python中,异常也是对象,可对它进行操作。所有异常都是基类 Exception的成员。所有异常都从基类Exception继承,而且都在exceptions模块中定义。

python用异常对象(exception object)来表示异常情况,遇到错误后,会引发异常。如果异常对象并未被处理或捕捉,程序就会用所谓的 回溯(Traceback, 一种错误信息)终止执行:

>>> 1/0

Traceback (most recent call last):
File "<pyshell#0>", line 1, in <module>
1/0
ZeroDivisionError: integer division or modulo by zero

按自己的方式出错

raise语句

为了引发异常,可以使用一个类(Exception的子类)或者实例参数数调用raise 语句。下面的例子使用内建的Exception异常类:

>>> raise Exception  # 引发一个没有任何错误信息的普通异常

Traceback (most recent call last):
File "<pyshell#2>", line 1, in <module>
raise Exception
Exception
>>> raise Exception('hyperdrive overload') # 添加了一些异常错误信息 Traceback (most recent call last):
File "<pyshell#3>", line 1, in <module>
raise Exception('hyperdrive overload')
Exception: hyperdrive overload

常用的内建异常类:

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAoUAAAEKCAIAAADrRbgTAAAgAElEQVR4nO1dy5mrvBJUII6ACLxzFATiCIjAiSgJ74iACJyI7qKu6i9agvG8zMyZqsV8mBFCL1Tqbqk7FcMwDMMwjkY6ugCGYRiGYZiPDcMwDOMHwHxsGIZhGMfDfGwYhmEYx8N8bBiGYRjHw3xsGIZhGMfDfGwYhmEYx8N8bBgrPB6PcRzneT66IB/BsiyPx+PNZDnn5/N8V+I38Usb1jBeAPOxYayQc04pfS0JfTdSStM0lVKmaRrH8Zn0z1eQmQfknC+XyzRNwzBMa4TMl2XhG5nbOI6Xy+XJMhjGX4D52DDK9XpNa5xOp3EcT6fTMAyn06lNeT6f90W92+2W0rd/XyhDSul2uxXh48fjscO4KaWuGI36juM4jmO3TfQpLFzO5/MoOJ/PKaWwJng8HkhZhI/xri9pBMP4N2A+Nowyz3OuAKNcr9csQLJxHPmv0+m0Q7fTNIHDvrXYYMRSCtjudruBj3FfhWDcwSIDFeRf3GQypLzdbsgNP8dxxPIi57wsi+aZGwQ+Bk9zEZNSGoaBFyD+b20lw/gtMB8bxv8VqlugtlYpllzYYhgGPvutxVY+BgtyHRBET6SEMhnsiMTtuuF+v4Nl32yNnTQtH0/TBCLPOd/v91IK3j4Mg6VkwwDMx4ZRHo8HBWIVgvGTUiaIFjrbLXX0PM8gLYiA31ps5WMUcpqm0+nUaqoh0IenAPCl/oRi+Xa7USym+rqVj6EYD7her8wTDTj2wBb+rgYyjF8F87Hx1wHiCRbQYBaFTjWI0eCtLewI0DvA7m6+FHpjktw0TSgt1gRkxLTWVyMrXUko7ZFZmYwiLxXLp9NJ7cdQLIfqqA6cTYd2O51ObJx5nlEpTQman6bp8Xh4x7VhAOZj469DpTdYhSEH6+4k8DHuk3Kwv2lZFsqF7Xan9xYG5PomIJWitFwcgI+15DTNUj7WJQV4XfmYSxPsVlN7sNrRtY7X6/V8PqvxGBeBZbEtTpc4aWPbtmH8WZiPDeM/wJwJG2qp27LAQ2AySpk8w3O5XLp204/x8fNA2VpK03NHWphhGEjGfJzGXSSjUZmUGdAWI1Rzi2VZpJQSTklN0wRDsmEYgPnYMEqpjJVSut1u4C3uAYao1+4cBh+TvVQ/jPT7Cu0vgeq3qQqmQlsLAx1yqiejisisZFDoqKGspsSv8jGlXuSGHFQip3IbmSCxWgSob2hbzDD+OMzHxl9HrmecwCI01qa1hRgbtc7ns9pud+jkNTuV2q1SoNigLkYddTcWMY4jdzijjlB0d/XkaoSmgpr6am7+Ctp70jAuQNjdk8qG8ZdhPjb+OiA7glkp5HGjNYQ50BtPB7Xa6W6236qvfhd2FgegSVzTeo0GgffNLRX04/FQfT7QrbK+4nw+IzdK3p+qmGH8Q/gp84Vh/ASAjdr9xmo2HoYBFtD9rJZl+e79Sl0RVtHdX03ATK71hcYex4I1n8vlwjt0zEntdCjSVjl5reeera82DMJ8bBj/AapXvYPt088EaXg9aIXdAout548JHliiEvt6verxYt3YBc0BE1+v19PphANLzHBLmMZWbVyneswJduuf2bCGcQjMx4ZhvA4+bWwYWzAfG4ZhGMbxMB8bhmEYxvEwHxuGYRjG8TAfG4ZhGMbxMB8bhmEYxvH4Px+3Xvd+IzRGHn/iTAj9BzFaTgBCr/81ILoOTrA8Hg8fPjEMwzgK//Hxm74FDMN4BnTytYVR/EcaXwuuNcPh7K2F+D8PLLI1ChlAr+z0/0pW0DNpXqO/Er9eXw2pDkLeAYP9l+CoyfHvgBzMO99O+4ZhfAVCsHMFEoRQofjev2rqUDr79XxsGMY/idxzpZlzRqBGXNB5pxEAr65jDaA5rX2gjuII9gACNAQ6vM3HhmEYxj+LfZdwQbH6eDx4Pc8zXL1+H0LZzMeGYRiGcTzMx4ZhGIZxPH49H99ut+v1WkpBkPNSyjRNuPNNuF6vwzDYLb5hGIbxhfj1fJxzTinN8zxN0ziO8zynlL6Pj3kwTPfX3W63b3qdYfyruN1u3FyKbUdlI3zy5zHPc5gTUko5Z40vaRiH4xfzMY/xpLpL8HQ64dhJu4/8qzCOI/a+w9kIuLm7EdQwjB3gmy2l5JyxusUHhYPCX3vsFTnrHXy2p9Ppm1YAhvEB/OKxyAMP3LKPDf2XywX3v/yN0zSllJZlmaZpWZZlWVIv+rphGG8Cny0+ohZfu8blp4pJg4t4zBheTxs/BL+Yj4F5ns/n8/l8hv34dDoNw/BNCmR8w1CJn04nCMrf8SLD+LcRzl9CPsZ9HDj58jdiwwe+WYjFNDnZ3mT8EPxuPsby9nw+Px4PLHvhiBvE+U0vfcErDOOfx+12w84PGp5g0M05f61Nl875eQdWrev16l2Zxo/CL+ZjbK06n884WI1lL64RN+JrTVA4Nr7lzuYLX2QY/zzmeYaQqqIqOPLLbUBcQOMn1gGE93MZPwe/mEje9PT2tVqvwL4wRJVS7ve7+dgw3gX9lIZhwKeKn9+0JwOZw5CMqSPnbPux8aPw64lknufH40Fv/gy5+OXf2DRN2PnZsq/52DDeBeypxofTLqy/Q2bFu7DtA6o1eCu04cn4OfjdRAIdMj5s8GVKCfu5vmnNCz7W6BxYYn/Hu4y/gD8bz442XeyoguSKM0jf8TrQ/PV6RYNbLDZ+IH4xkfD4r35a3Ztf/lKNo3K5XMzHhvFeIABRqcSMw4T4e7/fv/ZdFMGpCdf5wUcWjR+C300kkInb+9+hrwZaRz+lFOu7DONd0H1b4zqa7Jfbj6GUvt1u0zRh+1iLL3ydYXwYHoiGYbwaj8eDZ42wBYT/muf5y+3H7bkmjXn3SpNBG2LPMAjzsWEYhmEcD/OxYRiGYRyP//MxfNQdjm4xVLVVxDaMxFb+GIZhGP8A/uPj8VXY2lJhfAngoTcgpYRdM/DybbwYiC041rBg/Mk7xvPAEjxvLN9LKfDBeeS0ahgfgvXVxwOnqHdmlr8Gul55PZQpje9ASkkXhfSUmarbLONlGGuYWu2gYRg0aq0RcLvdrtcrJorPTzhBv2s+NgzD+LnIOeNvu+0csV+NfYBH+XMYBl4cvSJKwzBoh5qPDcMwDON4mI8NwzAM43iYjw3DMAzjeLyUj1Vv/oXnlFqXmdgu/lX5G28CRhr6ObrdbohFHZIh6m17n//tbnkIyeD4sFQXxPM8twPger0yLEHO+XQ6dcdblmhd2J2xVUGPKMMwvhsv5eNvmtGUCYidudX4KiBuHbbIXq9XOCXm7tlcj4k/Ho9lWR6PBwJw4Vm4RRzHkUzJp4hxHNtoP8gETomLhAlSYBsk05/P55CAW6lB6uBs1EJz03h8eB3q+BWNZxiGscKRfLwsC2ZbzHoQjzC/I0ZpqcINDs5iQh+GAUFMMd3raWZuRMQ8yxdBXANPoBiQn9L3RD7/U9B2zr1gefM8gzK3DlFw5dTlYyy2uN7iYOB5A9xB/3IIEaUU/BdZUTGDlLiD/DEYWol8mibkk2o0QJzFsiMawzC+Fi/lY24058Z96DmHYUCEtVRDrWFmLDVqaSnlcrngJiZHREtFJl2xW29yT/kwDDlnzLA4P2BZ55NQ8kNv4v6yLCFqXs45bO4PCMcSpmm6XC5k6FIKjiiUOhh42IPFwElu9iku9KVpHeue5B0WcCxPez5Bb36sxQzDMLp4tf0Ycy5li8fjAfkGP1tmpTqRwhMl2vP5jGl6n48hn+EaWU3TxDd6Vv0kIF9iZQNNMnoK6gfKmtCFoK8pqgZ6HjecVVH5DMEUL4VimSJvXgfAZtnSOgx26G4kZoG7FUTVeFiQo84wDONrcbD9+E0+Vt8xmI7Jx5Cluk/pTUzoeq1inPn4k1B1BZs67I16PB44eq90ez6fg7EAN0F7pEAMgECB5GNlX2ZCioU0jE1kWAIyMZmeCz7qq0+nEwsGazEiXuNZrDn2BX3DMIwP4GA+xpS6w6xBagnyMXSPz/MxGd18/FVQ8uvyMRgOXKt8rLRHwI7LbkVuFIsBMDGYEm+8Xq/UuJChkRVuQigvDR9T5AXrk5vxutvtxk1hyI0bFGCr/vrWNAzjD+PV9mNcBHMgpKtlWWBgLtXQW6rJeVmWy+WCifJyucBwyNww+9/vdyVXJWlkjgR41nz8JUCX8aeuq7Ls0iK/cgMBvdYxTWupDVZbvoWG6pQSDMmqlG7tx0Vigml3c6MWcsPP/VIhje3HhmF8B14tHxPzPE/TxH2zOefb7ca9uNfrFf9i4CkkhmjCbbd8FjOpSlF6JlXNz/gJDWRZb/Yx3gvVPUCChNTYaphLYx5u9dWlqqyZvrv7vaXbII6rCjpkHg4lY6v2qWKsm8AxKmCWhsYb92mrJsEbhmF8FX7ZGl/11cbhOJ/PIGBs11KZuMvHypotH2MzARdST/Jx8D1CPtazzojHwgNvy7LgDlcG2KWF5UV7lp0nniEfc1XRpjQMw/gwzMfGB0G1PymQ/3qTj6n+xU+YIdL6OPgWH1OlAbrF23mKScVizR9v1MNOUE3jvQotOZXYge/b3AzDMD6JX8bHxg8EzjvpnXmeW9lRbz4ej+v1yqegBA6PwIHXzkvJkd+0tYoydPfVFo4Nw/hamI8NwzAM43iYjw3DMAzjeJiPDcMwDON4mI8NwzAM43iYjw3DMAzjeJiPDcMwDON4mI8NwzAM43iYjw3DMAzjeLyajxnLFpjnOThz6AZrCoA3RF6/6Um4fUubQH1rv1kAg0A0Q/5U15WaZpSg16UZBqWUZVmygN425nmms/FSPYe0xVDvIoppmhD96RmfIdM0hVIFD5ptsQO6jsm6eD7Z/hv3M1SvKYZh/HC8mo9DYJyWTZ8Jm4O5eyuHFm+mgb9GxB3y/PU8QqCtsuHkUh1qTtOEQFuhnRmyiXEP9X7Iqouuc83L5QK/mCEBbiLQspahdfypfjEZaep+v3fpf6sYDGyFi9bDKFqyNGMVAVT4E01HsGUYu0xLUsR7aIi2YhjGD8RL+RjSxvl8hsCBawacZxQdRqstNfYtQt7yqRCZgIGDcIfPQma63W58C0UNSGwUvFq32O17GRuKkhaEDy0JIuYywuA/D9UowLvk6XRiRGEmU/qBO+iuGE3oqihLCKnwUyNSbBHhNE0IGIUEyJbRL0C3GG9gOIRV1hjbEJoZ45mRkkMF8bNdZ7B4GCqn0wljtV13gl8RaapbX72JsRfCULblYRrUqy2YYRg/By/9RK/XK+ZE8CLC7GB6AoEhZp96BkZondvtptELMD8iQa7h7hm9J0kUekRp5FtCMCJMrGWDj8N7MXGDaZZlYTAijRqEKVUjC/3bwJqGHIzu4+oKaXANtmPLoP0xAFQbTNrb4WPGYgKP4pqPYAlFQAJmtlSboys5ALQ6XE6hOhRbQWkgwrDeUskeOad1zGbQMIZKluifaBAdt6G+XN6ps25UOWgOtCL8QMKXsqXVNwzjJ+CltIE1O0Ia486b+mqdnoIBss2BlMA0XR2gTmRJYuWqLr19L4SnUsrtdoPYre8Nhf8jusHT6QRNAzkG4u9YAwnD+ovmVeUHYg/jEXYr+2KaJqXzwMfgclxADRsWQIhYXGq/a6cE7sd/KZVS/FWZEgTGsgUButTlHYJqhNUkgTwx8HINSBW01qph5noCpWKRStUqqWZCH2e/sDs0cXjEMIwfhZfyMSYytTg+w8ddbuvyMSc7/tziYzXC4b+Xy2X/vcG0PIrOnBLVn5rs7vc76stag2Ngy0TLg6JIPNpQbbeqoZRo+ViZibyoabR/kS3JT5/laEFfj+N4uVwCwyWJtTxVBD7GzgMm06LqCCEfI9v7/Z7XWmtkSxm6W/2tpivNh8ObmlWbwDCMn4PX8TEVjNBw0ij7hXwMTWbQV7eZYM9teEvQV7+XjyGQ/Sk+htIesimUB7naNaGaHscRP6Gvvl6vVCSgp6Cvxp1pmijVDcOgpv1WPqbsCPYa17uuSu0IvGUcx9vtBnVxKx9T3KSiW9/FXqamGnYKXQeMVVkN3Tj01VDgs77KxzBz8O18HbiTxUBpWz6megCJ9fHQQegINBfk7G8KTGkYxpfgdXyMYye8hgkZcwo02FQL4ybmmmf4eKzmW+6pISuo8Y9lwMqgyGmQD/Axq8D3lj/GxxRDQXsgZrQkhU6uunBHN0YFfTXYHTnTNFDeYz8mH3NBgJvQMKf1Tis8S/M/c9O9VEU6VAuctveOIVn7LzxLfXWpwrcWSe3HKDzGahhUWPdk2f2gjxMw3NAcrnskDcP4mXgdH+t0wEOlkDZU4MCcNdZdzVsnR/X8MQyTSU7UQCbgpmu8RWd5zNFIVtZGO8zI7XvD7Ik8x/XmoyePiv4zCISRZBO1JkPzqmF1S+mKPNP2fi7sYGcm3f3VsO6XyoLIkJlwZQb5lUIweR2WYG7m16oxTcvHj8cDYj0oMPyX0jw3loO8tU1UPtam2+LRIM2HNmfjUEPezcQwjJ8Df6XGp6CEMU0Tdz+FNK0+mZoJ3sTj4UxwICQ9R7vFxzTTDsMAIzcICflTmzIMA08h46U4rKza72fsxywMnoLJPNQXN/ks08C2zVcAz/AxM+QdbTTdooGqpY2DWIZh/ByYj41PoZVfA6GWyse60TfJqV8qLaCkxXEyzZD5j3JkvFQ+hoMwvhGZQPCd55kHscjKY92DRqMy0kMdwqNZkFyTnJXCjvosW/G5ixuidlCYa7ZjPfs+1r3cOImHkoM7UYXH4xH2lgc+xiFvSNsqXlPTjvJAdcHD/drmtiIbxs+E+dj4FOZ5Vi394/GYGq+TOBP1sfwfjwdZJ0h4wTFLeBB0G4RUHnZXTgr8lMVHpqqyW2A72xbDqfmcxYOlhjVS9m0zwVIj7D0sPaeh4YAylN5ZToHzftfybRjGT4D52DAMwzCOh/nYMAzDMI6H+dgwDMMwjof52DAMwzCOh/nYMAzDMI6H+dgwDMMwjof52DAMwzCOh/nYMAzDMI7HAXwMn4L8SSeLhmF0YScehvEX8FI+hjNFxJsrNTISPAgG3/fqRtH4sWi9OTL4oHqG2vJyFTx55XU84HfhSefM3WTP+HZ+ZkBO0wTfnN3/whMnXWymp6Mf4kG9g4il+0+1ETvgxSysfRlIrYjHzfYpTd+untWReClFw2W2CKXSnznnj0Vk0dhx+2+k0zRF17+bYbwer5aPNWohp2PMOHAyHNLTqzAjNWE60O8qfE4IztP6FDS+HOw43rndbujWEHoI/c6QSuTjNpYinGsq4K65VL+boHys5Oh9mvQDn9V8lvEheIcOpZkg+NZmCCYMoSyhJAn6ow7QsIbq6RNvpMfptt12wPLonfD2lmZA4fSdCUfZ3fUTvyw8okGpSw04HbINAB/jM0RbIRrpOI74WjVmF/x1qydzzYoev7vIOTNnbZPQHTqE1Js6gnDovJFqjMvT6cQo3VtvN4zvxpF8rHIJrls+VokZz/InvPAzVA4j6jC8TzcOj/G1CNLSMAyXywXddL/fcXOUqIVIwM4KfEz6LLVnEYIpEJIS+b5IjZBKrUiHSE2k6mkNlFwDOqEYIbGmARgzCtf6ajQIKvVmsbWcjNQE6IBXhG8H+VNyRcPyv/pZdZHXQbTu97sGvQgYazQtfqHsSo4BdHpLwOEnG7YLHSGarFUGEPf7PW1EiUZuRWKioIu33m4Y342D+ZhrVdynYlND3JxOJ4jF+GY49SDwO9bLpWoLS/2oINyEucz4QpDPcg1DFOQwdjQErHEcIRxDHtUAw5B49FkMgLShSX6Sj0Pk4xYwoFAObomfr2C4p5AAASoQcwlVhoDIijCkBEUxVD+ldLvdVJ7uohXEEbm5TcZ8IBCTWakPgAwdyo8eKdvGAiSYpgmdyFowH5SHnYvI4tcK5rMsC3s/tK3+bJXzChJn6AgWUucTxOMKFKvX1OKoOgdV8I4W4xD8FD4ea1Q4rH85B+Hz0BzS2vDGKa/UeZ/MbbwAUPRRr6uhD4lR7McgCe13JuNsqzJllyCVflJVzLbmUhL87XbrRk9KVQuNYFAppdaGOgwDR+NWeVB4SGzQggYhj81CouKr963IQfKDcAzuB+ni8aD5LyIfUyolQsxKzS28HWSGmF340CAH4xGkOZ/PCJEZ+Jifc/g801rz3760bT1tZPIxiz2K/UJ7Ck0XWkZfpxVXg4WOLsN4JX66vlpX4kypP/URyg3+nF4GNDX67nw+YzoOHIM0iB6IwL2YLlWJCrMlJtbuCMEy63Q6QbhESmQFQNJFYpAx5B4QCUMOs1Rh6dCdhSHscsGRxDIa7LW6ByKQOhgd78IQ3RJGW1B+LdU0Tqsn/otiBNZBmrBq6Zqrx3GEPN3ysYaCVl4vawUvWG2aJtqqAQyGLEEnSaVE21al2R2mgLYMA0AF2bHRV2+tnLrNzgVEu/o3jFfiB/FxV659ho81E9788pIbXaiir6tLLGv7Yqr7AJCG0zrnaH1wZ1ZtO12BdxUhKkiWnOipbFfT7+Vy4UURS+2yLK2xuVVpcpGxVWY2Al89NqbQtiJtbiwSzTEoOauGd8F2q5ZvNgsB7qSZPPxL+yWJ2TtYecmgITcdG6HLdiy1+3ysY2yqmwMCH+N1yEc3K5TeaJnW+wO2hpxhvAAv5WPue6SSDcIQZopSylg3ZHJv6pt8zM2WlAa6crbxTQh8DEEwmDzRrTBehtlWu6y1jHYnRz04VJrx8Hg8VOxWwZFbbcO0DtAAzCGH3eBpbX3cmaxbbXxbFwph+nPHWtlKfsgK+9gp2GnB8EWw2G0dkSbUmnvIuf1Cm5ebM5AmbPkOfAxomlFU68xki4/b/eTawtpxMP9DfNdHMNIAqty1OpoSbYhJKe3uNjCM78ZL+Rifhx4WBENz+qaCkTfDoZHSO0KKp6iNXJblyZOdxucB0hqGgXuUqISkLgRT+ePxwA6mJCZMnf7ahVSX//A6TaP/BT/xp/JxN39et2IZpvXn+ZgCVvcolOajOud9hJNjbVbk1HmedTWjfMybrCM08JAsSdiqtg0Epvu5sJ7IclZY+RiGWLI7C0k+puqeBctiRIdlYas1cs7cFBYWBDsUvnNeS0veqmcM48Xw+DM+hSRHe3XnDo18pZ7KJZKcHiaFYJYn95ALg9zTbkjen0PbjU7dZzHRt2pSliHLyVouK1lfmMZhJ+bMHkgikOiTU3+XubsieLt04IXKrFpHStihFpq5yse6PVsXCspqZHS1fGszYvOXllCXUGFXdltHjJw3+Rj9FbQ1PGzGp0bZ2YBe0241jBfDfGx8Ct0TZbS85uoComsRVAtosDguywL1cqC0rvJ2p3jP8DHfxcOyBIhk2sCyLDlnWCi1glRcb8nxz/MxqgB7tma1BX17+161H7esVmovtMsInOIN6PJxrtsCguWbygM15RJIiY7YaYpWw3G/39sy4z769HK58I16FvlyucCMMtU9DaUektYiGcYrYT42vgWQpd4laszzrOmfzGF/3tw3XvDZeZ67SuZ5nnc2W5W6v6FbyFAwFfu6rui20CZW+6iCxciyT1iLMc8z3dt1T9niXeE8IZ/dep3SsO6mDi0fGoqu3PRw435vttarInvgn0msIjv0MXl95Ay7xPc73TC+CeZjwzAMwzge5mPDMAzDOB7mY8MwDMM4HuZjwzAMwzge5mPDMAzDOB7mY8MwDMM4HuZjwzAMwzge5mPDMAzDOB4v5WOGY3vTv7R6x90HY1TQ+51xCHZ8CJe1h4otn1m326114PB4PLoOFNsoAl0EfyBjEyexbDsDeS/gRHM/DYbrjpMTdZrRDdtMIELlu0r4ZnPl3eAWRNfVhmEYn8Sr5ePL5fKMI7o3PfVoyrGGeLOLuwOx72JQnUdu8TE9P3fdQHbzbP/VzUQfafmm9cLI+8E7JrwzwoFl69kxOMhclqX7rmEYdjhPm1EDVbWAc0deq0spDQudxEc3HUOqm6rwds1H/UdqwcLaN+cMV6OpRojyl2gYH8CR8Y8h38CDPMMs4lMPzui5bKfDv1Knkpa58XOeZ40iBReDGkZGf+JC3eUbz4AKDxBACBqhrhZTSufzGWH+hmFATL0Q2o/yrvr9D66emT9DgYFNEQ+AjyOgIUYL4kqNNU5fW4sdPlaAkxgvgR4i2zgZ+hPl0YgOmuZ8PjO8IBxSns9nDl1tBMij4XWhzbXwyA0ROHiTGaIkXQ/hoRH4UWjUB9V2lFIYpiKl9Hg8lmXZiZloGMYWDubjVCP0YTZBjB1VRXLyxfSKmV1n2JaPMcvoTMdJ8HQ6cb643W6cRzB9IyrRe3WARpZATF3CQ/PSHzXXW6HvRokOlGo4oOv1qvHyMBjAuEiAsRHUpxg2fCNfxOIh8mPLkRg2W3XckWuR274WF1EL2zCOAMmVheGFLm4YuniUUIloqLDcBLrRBvl9tXy8LIsaDpjPKNYBlKHNVpu3a30wDGMHR/Ix9ZacnqjuaydQJmagGKYMejlGDYIEVmTSGWtElyCH6WzbFZWMHWgAoi4fY4VUKuVQsEtN1DwEIIKadBxHdKX2CFgBemMkQG6BKVXLimRhOKlMrPrzLV06q9AFBxK02W3VAGqVt/hY66iVYqmgJ+crUDvVTrN2rb66fUVoqNBobUvmtcqKZUspsUhU7w/DsB+syTCMgIP5GPtocg1XzllA+Rgigs7LGgSXK3fNNsi4qrIra5mAcpvnjo8hBOhtaQYqDV0YQQwNIevLekcY8wnRjTQNBcdWOMbjVKtAqi4bfLx1HTLEs2NvNyIHJIV7xELWNCgM37LPx2gZ1gtfDZ6CHHw+n/EKxOsN8rHWQkurr4CCARlq/rjgq7UjgtDMa4jL5/NZ1R6axjCMZ3AwH+dqAwYvtnysXzhmFqjgqIVrP/t2O0mYYQMfw9LmCGsfA1ZLIAASpGp9oXAmH2NptRVVnjpkrsMwy3fTnM/nlBJ+wn6MrhyGAYZtkLlxAmwAACAASURBVFZZi4PIB/yBwXO9XnkdDLGPx4MLQVWltJundOjyLapARiPAzoKSo9hcO6okCi4nzTOWcK72F1QNH0JrYcGeDNZOQw6HXsO7+MawStBWUh11l2vR6dS0m4wN4714NR+rfBP4uMj2V51AsSrHxhwyNySD8iE+puzC95qPP4Zg2gyyMoFIt6UUWE/Bl1h+qWg7btiPlY/P5zMfwevQlSAADIxShfLT6dQOJzyrTDOKPVv5mCSKn3wWBIbhR2W4LiDItagF9isoi6usTLSDX7+LwIVqPMa1thJtzLp60N4JDYLSlh4fM6uglAqfmK6SocE2HxvGe/FSPqbeD99qy8c0B3KWpwURTw3DgJMVpRRc4yZNVqXHx2GWud/vmKRSSsjNfPwxoKl1udPlYzavEkmbDNb9kE9eq3ZD/jvzPpgyXGu2/K9WQQ8pYVy1ryb7Ftnkz5TLsgTbB85KaXnyE/ZjptRq6gdCDMOgZ5+2su2+Anfu9ztqvZVJW6r2E8NggLbAX5NhfAAv5WOoE7NYp1owQTBW8UCU5kahmShVkg55dkui6sRn3CAYLd7Fx6UUiI+t/w0941Q2+Bh2U31qi4/zel8xda1bxWttxo/HI9iJ9dmw5gv81N0R9gwfd5W9kGs5timqssWgVOi6NMEhAs2HhaHJYKuOCrxL7dOhvlyd6ILbMIx3wf4yjU8BzBdUtWM93ooZnPpq0APVJNB8cGNRu/NI9eHQ+qqymmrtUB5kG9ZksCg/z8ctdmRHns2d5xkvatOMdU8iVdlqKS91bUFFOguGxPou2IyzWFtgS2aV53luLfRdfTVtz1ihtnWE/V6tEmV9Fhk9WGQkQERGGi9zDeN5mI+NTyGvXUN0gU1MYJGg9sCz6uYFUFctuA6eL+HpIrB4NyumH4YhiNcsyTN8vJNG+bi7waq85U9U84f7GlxznwRA0zu4k7Iv9OG6BAkeb8p6p7q+Qv+7dfY6lJz6BgrrWGrwdTjeTfu9YRjPwHxsGIZhGMfDfGwYhmEYx8N8bBiGYRjHw3xsGIZhGMfDfGwYhmEYx8N8bBiGYRjHw3xsGIZhGMfDfGwYhmEYx8N8bBiGYRjH43V8TG9Bj8fjTY9OhPrNb+POGj8H+/6n1I0XYte3aW63W+vYfH+0tLFDAI2lzTtbxZvnuev8+b0I/rC6aKNaKYKbrbEXa/l2u4Wbz7ilRDN23wtPXprbjnt5wzC+Dy/l41yjtz7PrDtOg42fgxBvoDQxPNQBsvJxCEtA54shfGGpoRSCe07GPVTAiSP+RaK6Xq8h7JKm31ofjAJ44cY1/EVrYniH1ny6gxw1Ui/cmmyaJnVD3Q3MAB/RWF5gBcNAjawpvGwG4k81dKnmwxbGizSEJRsBJcR9DUBpGMbX4tV8fLlc9HuGy3ve0aB13YA8iBSEqHNIjAB5uI9Z6X6/D8MwDAMnKQgQW7KU8WGAOHeAZAz7gxhHuJ6mCVECNTIBr7vxnUK2ZYOxEHkzBP7L2yE1t/g4CJ3dyEX71We2epPhQdkULPblcsF/MVz1XxzbqFS35dmMXNNoFdJu7KatJuXPJBFR/R0ZxnfgpXyMyYh3MHEgLAzj1WMGoRv9VCPYaCYIgAMBBcIQFvuQPLCQ10hziJQOd/nWxX05NM5Sd9K/Xq8pJehFobBFD7Zh+xCYgRlCGmY/IhO8AsOgZb5SyjRNHCEkJAi7VMYi4AGjLamwuBVTIdAb77PAWPApQoBCxlJk5CVtgbSOt4joFyEGFG9C3IfUjsqyC1DNvA7WhHZ7PB5clDD4aW4iTAc+1gt0XxuOwjCMz+PVfBwCvDNKTKrx9TDvgDhzDfxOyWme51TVbpjsskS6xWxOyh8lCj0D/3ke+XKMEtm3y8eIvVjWJKpqUuaDjoYQhiBCHBLMHD8RqQk5BNM1+Bj/1RCHJLCylolB1e018Xg8QtDDgFyDJJLUh2FoAyilql3PG/GP2Q7IQf9F4sRSFUscrFfIx6ia8jEZHa2Nn/gWRon/uMXHNByoBYErmK3WMAzjY3g1H4cvP2jbOE9xMtqZtgidQFUtyeuuNtL4ErTazpBA12HUeY7jiAcDH7f66iLdR0rgTeQQLBHUA6tyJeirlY+3rgkqh0sjPrJgyJxKglaYVtrrKs+VjzH+tTWyWGpIkGjJlBI0/3xc9dUsRugaXUWFYvC99/sdjwcNhGEY34FX2491L0/qbZnGKp5CzAf4mD+v16v5+LtBoVY1q6r1hcKZfDzWzVDU2WpWQUOLOwxajPRQ555Op9vtBomTD1LyI1uXUhCQuOVj6swpYgZxvNSoyZpbq+YB82UxqbRRliFhs6EgrULQ5CfAKjM31LGsORJGGWwug0xM+ZjNSAEa8ZjJqVoklgdF2tlEBsmeKv3uisQwjM/jgP3VtA0Pw4DpRmPIY2bR2UEzoflQMa43tfJxzkTm42/CKKbNstE7pRSQR6lmiGEYcPZmXG8AHjfsx8rHyAT/ouqbdlDkScJDehD2Dh+PYs9WPgaJtqp4rgNKlTKxaOCruZsBi5JlWaDunqYJVlssSljmkD/1BNwDwTqywTG2dVnDYo9r+3FQTmhrE0qxLd3CVo2SmI8N4/twAB+XOmUsy0KzlooXSp+q0J7nuT1X2ioYcWgkyUmYLkkYnwdJgne6TU0unOe5NRsTehBIVbu8TvXIDdOD9rqHdGnxfTwe2IugfKzHkbUKSIwLHZZaJKz5xnroqKw17a0FmmL9/mbvlo9xGgqrHOavWyvIxypqq3xc5HTy1leA6oTS8icWJTjCgCZ986yzYRgfww8iKsxQl8vFq+9fhHfxcWlOuBE4ydPmE/iYVliYn+/3Ow7/tFkty6L3YXx9pgpb0OLRsMpKbS0oNc2bfEzoJ5Cb/c+8OVYzvJYHTUT1QLf8Cj1YhWRaNcjxfKOXtobxffhBXxfmkXZjqvGTAbFJtcS4xn5mbmsH/UBsJWHANAsddVpvJkh1K7Xqw3nCDSoQFRkhfUJwJIVQwIV2+gv5OGCU/f9Qj3fTqK0d9YLqO6+PirHYaC7uTi91FQI5FaAcXOqJg7Ee69IlAl4Uao32T80BJ0rnsCyUqnNCt+Kl2W68DOOr8YP42PiNyGuHWV1AhYt9VZzEaR4u6w0EALkZRgq9T+rV9Ni7R+ea0DaTgUBan+TjnTRq8U1r/1aahpbdANS9qxYKbj5pM4ZNHfZycjNK2Grv4YazPaGE9tf04GAe0QZh6145nGCGadx8bBhfC/Ox8c/iEIfnWy/97sKYHQ3jt8N8bBiGYRjHw3xsGIZhGMfDfGwYhmEYx8N8bBiGYRjHw3xsGIZhGMfDfGwYhmEYx8N8bBiGYRjHw3xsGIZhGMfjdXyM8PK8/nAm9Dv44UyM74D6cN7/737K56EeNujl6l2lYpr3Ouvo+uqapmlnTLY+yELB5nne8iC2DzgQfcYfSLcp1LOmYRgH4nV8rB77PhwAUT0O2iHRzwH8KgeC1ATqhjo1gX4RtkuRa+hDJNPAxnofEQzLOloDseO9MiRTX5Jvjis4ktxqBFY8ePps/WWGFoOvyh1qhHdMhCtVH6V5HaK0NLEU+XgoHhYi7AgNxmwYxuvxUj7mdICpOdcQtvgJR/yMRoCpAZ6HGTygJXKI3XgWUxKmYDzFNOM6Ag/9/jt43GeANkQnauw/gik1qiY6CPRDstSOQMShLo+CVBgyodToC10+RvAD0pKSqK4ANNm4EX4qFCAEU2LUB17DoTQjNyMl6BaNhsQh85ZZAxDLgf6r9alu+jaWIq/xjdADdmnWJYZhvBgv5WNMHPBuj5tQMzKYzziOl8sFXuynabrf75hDGRKu5WP8Cw/iv5h58ZZpmhDHBskwz+Iab7lcLi9rgX8V7NbSC4KEQIcaAXCaJvQUQiWGJRHGw5YGBV3JZ0sdVy0f8y2lF+QR+UDTywyRJ1/RRVhnMLdhGDCWsOi83+/tgygDcLlcuiSaNoJD639DAAw077IsLPayLGhVflx8XMuD9LxAkONpmrxINYxD8FI+hrAL0QQ3qbgr1YyHaRQR4nRKxUw01mg2mgNlBUhUlLo0/FypsXFKDR5XPmGxMxTKhV2ZD10MqRHCtMqjQRwc1zEWFRQ6KZRztAQ+5huXZYGMGEiOqloFEr9Z2TYrhK5CASB0YrWHqqEFzuczwheqIA7NjfLfVrhGtgDbM8j3aBYtEltJHw+NyQ/qXLGzGDIM41vxavl4mibOOMMwQNkIdgx8nGuYW847mEDbTTFBsQm5R9/LazK3Z5yvAgIg8idm/MfjEYgNMz6snpjxaQ3VZKAQkBnMtNqVFA3xFkThbfkYIwqxF0E2WxKnmnKpTt9H4GNqmKGCZgtg8Yfasdiol/Lo9Xq93W46pPNu8EeUEx8F93C1+up20cDHuzdRgLbXDMN4JV7Nx0W29gRzMglb+TjIr+1UhZR6Z4ePaUE0H38VaFxIDZAAelTVakAtPMp+AoAqaOpF7ve7GmuZjHrv0tNX3+93KGyDqH2/37sstWN/7dZXMxmGAappFgAa+Pv9HkYv3kJbSdlQTb/Jx2R3NldbfhZSldhlQ3vR7TXDMF6PA/iYFjhMLo/Hg/JxqXMxtr1QF80jGc/wcRAOWn11Nx/jAwiEh71OIQ0nehWFqUzmHehCIPCpnQLiIK65T4royselbkVWfSwvSimgaojgVOqO1UrCzYNdBDEaq8Z2LZLWe6dLZT4UA7rlT/Ixt3N35WMAVeNb2t45nU7UaavG2zCM1+MAPuaMoxMZpmDVV0O3yf3VlKEhWlH52eVjnQqhUMWDeESne+MzIDfwTjvjz/MMdmQ3cQteKeXxeOC/oxiStYNasgGJ8mfg48fjAWrnmCGYLTYuERhOemdnQ1OrYwe4w/96vXYZPecMsTWlhLVml4/DWaYAPEuLDz+oLbk2rJBCMq6BoDznesgwjEPwJ9RTEK+9a/Q7oHyss39wfwEiwdoIG+5AWmCmkGdYMGkCWmpJotfrFTdVff14PAJtlyoW71fhmfrqWSMFRfCW1cDTYz1igFq3K4ZSyj4pprrxKrRPIFqsckrdRKmP8xrmea6HkLP52DAOxJ/gY+P70Boggz65VIE4SIRkr3aL+5YCQ7UpzAcrrfaQUigYziN1s32vvqQrjLbtoPZj2LNhaWYjYH1AC/QzJWlFaliRQ5G0MJo+iVEftmdcpGrYTildLhcfeTKMQ2A+Nj4FWhZ2EKyYABTLXfVvbvbMA9iNHGS4eZ7VxkzcbjdqobFzuGU7NTPvVyHkzI2B2PMPKyw2POMOSE63ROwgVydlXQ12aJlwhyqHNuVUnZexsnoyEPoDbgLX1rCgbBiHwHxsGO8GebH1Sv1hPB6PV0qlPtpkGD8N5mPDMAzDOB7mY8MwDMM4HuZjwzAMwzge5mPDMAzDOB7mY8MwDMM4HuZjwzAMwzge5mPDMAzDOB7mY8MwDMM4Hq/jY4SjaX34vfnUu5wkBLeFHyqp8RG0HisD8N+c8+Vy2erTtrvbeCGaODXRGEsp9/td/VXB+2POmW4pSyljE0ibr9upgr5i6/Hnx/aTKeloM8BeLQ3jH8MB8Z3gq+/Jp941wZXKx3jKHoheBng/1gYPvYZ+mecZF7fbTb1s0nOkRlTkneCPE54pmWfrrRNhizQ9fFjqcgFxw8p6mRjWcHQqyZIwJtXWag/xG+DAki4nMRQR1ET9UDJGGV+n72JpgztMlIp1DxEjDMP4vXgpHwenuAyMiOkS0xbjLSIBXBOHWI0avI8Xy7Jwute3zPM8zzOj65Q6P+IOJAwUAJGC8BSmvDCJGwGMCaEMSlrVpmOwS3YQw+6W2q0MLayEOq6jWZdSbrcblly4aFddKAliKCGMEsJJISoUuhg9jvQar0kHD9JoJIxcw3UPw9Bd7XEYY2wjDaqD+oZVyNZaU/mY6w/+JB+jPN2YHIZh/Dq8jo8xM+oExKW9hqLDBabjZVkQ7ZXREuEuWOP6McZAWsdmV8JOEuGuVGEOOUOOQcEwa/+/XVICPXRnfEMBXkTkvq7UCGE0BOtFYq6BEIQR6TXwQxtLGHEXSJbhXRxFiFShfMxQjOhrUiPSQzztBkoqlaeXZUFuGIQog4Jxl7ko0eoESw0GWAjnwDUEKVYXhZDmEU0SF2D9aZosJRvGb8dLLawgQk4uCBVX6mSXc6ZebpRw9G2AOeTDOwxvx1eolVqzpfjFYHP3+13D31JkoWHSksebQChDXHf5mMGOwExBP8wGR0iiZVmUj9VCrM+OEq4RnY4y0IytfFbWrKYxCu/3O9QkyCcESlI+ZtRIkOL4dOhG5eMuVP2OcupnooZ5Hd4t3ugnwzB+Nl79DUPC4Foe0dehMAy8iIvAxxRE0trOx596rU/t3NFXQKLqPmJ0EQwE6ErIyriDuIfQN0AqTSmFDQToNdgmsH5SPmYy2CMAytwUKPEIlMnI7Xw+jzWcYkppGAZK23iEMR9VwMXghNYEPMfyQwtNJbZWAWI3oh+GJpqmCXVHxfkgbm61pDZpuyhEafngdv8YhvFrcMCaGjMdroMm800+VrOi3uQ8y306ijf5mNMi1NrdR4wW6EraGhShK9nLUFMHPqag3GZFDXB4dSBFir9qM0ZuoED8pU2Xg43sjiGU19sAW301iFBF9rHGDIbSO6UU9kmAj2nx5TauYD/WFYZK8y0fc0MZ1hzJ9mPD+CfwOj5WpTGnV6j+2vvKx1Q/amJeQM3Ioy9dIeNNPubPYRgw1ZqPnwEV0fi5LEvQ9xLKnV1lr/Jx+NfY7Kq73++Qd0lFVOriJhW/QcGruwqGYcDowt9xHO/3O9LzfNE4jlCDY3Sx5OFIlRa7rUKwH1O0DSlRjKB+71Z/HEfYCPDIVpsbhvG78NL91RB0TqcTRRDd5trlYygAz+czNl5hJoIiEZY8aB1LnfV0Ow8FoDD7t0Y+3YODO7bGvQk0I/bi8ebWOka5UNdVFCVTShBSxzUgAipvPR4P7pQmQab1QWRdrnEYBD6GupgCLggeP1uxO9XDWqVuKFO9NB95PB6oRdtQbATK6N3FB6AycZCPuf0Qg7/VnBuG8UvxUtbBjIYpGJNRmJI4O6vGj/NXF5oy192zreLxTQTFuPEkwnKHZ4ewE573U7O1mDIiE4DJeE6JnajPgo10f1OuZ360VKluQsZZI/B6y8d4F3kdEjMzUcOKLiC0AADXJTjrzBPDqEK7x5BPhSGntm1tq3DeicmQp/f/G8a/gcOkQMzjPqTx2wHyUFsmN0Cl9R74luqUTnARbLcUXvVdQcebZTMXAP5DStpudadCWRtruYeLlmDwn/IlCJ5brPku0HCq5/RYKlq+qQwvdb1Y6sK0PcpFSV3t65TRoRjAGgUaI+6PS/XI1jt7zzCMHwRrZY1PoTUHdNGqVXnEaMfp4+VySeuTPyExDMlBWa0mVVzzgJPqzFHyVmbFG5GA9/F46+mze7NUAzMyb51rLsuCqrUqma75HPZsHM8LFSnVBWnbOIZh/C6Yj41PQY827eD7bAHwibH1Xzju2CrDMyUnPqAWzmsHme1/35vhx4phGMavgPnYMAzDMI6H+dgwDMMwjof52DAMwzCOh/nYMAzDMI6H+dgwDMMwjof52DAMwzCOh/nYMAzDMI6H+dgwDMMwjseL+Ji+D4EPO/bTTOwY4ecA/fumew2ED3nGD8btdusOkuv1in6no/LSc6zBx+Epc79g8zwj252CvZnJm0A0FHVOsjOA4XmbP9WryTzP3ZK8+TkExymhvvT9TidfKDAe0QLsvGvf1fwz0NoFF+g72PIJ8wGPK/suXAzjW/FS+ThvRFx/HvB9CHxRoYwvABxSvjl7bg0Axg1kt27RNkM+5HWY5K4j6FI9bu7PyzlnvHonkLBmMk0TAzLyDoCVIlxaamuM44ioVvTl2Q06qUXSHLTRchNqmtA0UwOUqm0ivoIl1JtIE8JWhiaF69Oyjqa1MxjUSWrwt5rWkbPf7Dttk3AT1UHYyjYTDUmi91tfpNqGvI9xpe/CUyg/PJu+WWzDCDiMj7EYxzUWwlhchzhLSMYVazuFMbx8rgHvsJbXp9pABe1N471YloW6CoRP0CCJDJagDjW3+Bj9jjgKiLmEAFCIrakpU0rX65Xep3kzTLiITqEBGYtMmgEU7hFMIgwVgEEybrdbID9NxsAVQVsw1kigiF2BoFVh+FF5oJnwmtqCXKOiIUOGw9Ii8TvKNdgGfzINolSxDHgczc5kzHZZFoTlaN9VagBKlATlDKsNxLVkG0LsRvoQVAZxO3DNIGD6Itb3er2GNgndigAnDO0VWpsBP8LgaXsWi4zb7aZDEXFK+JNRR9FTuUZ9LYbxHhzGx/iG8e3xU8ccgTm91Hg+4zhycm+HOEPkItwNZB2G2CulXK9XJsDrICgoZxifAYgTa6C2g1p5Dv2LqXCU6NcIjI2RgGCIEMswfTMfzqEatVpnWzxVahAnPIIBgKwo7TEOVQAlIWU1nWeD7EsKwazNBR9DizKYFUYdgz+ixZAbFgQh3CSha5p2IaIhpdveaYV+7RSQFn+ylZAtL7b4WNcroCXkhqWVvhRrnVSDQKPiXCUEERytgcKg0YoYKThC2jYpNRAWegrEyYKFpsvrqNilLgi6xhcl4BBDnYsY5oYSesVvvAtH6qvx0SJ4HP7LBe/pdMIHicF9u92o5QP4CXF9rZMFPgPc5xuZkmvbfZOh8Qwej8f5fAajbPExb0JO4r8o9mECRQeR/zCZgt5UZsKSi8sp5KksCAJGSEcI8XhcjaCU2kE5LZmpiMnycOyhAKwFIjfjXaBtxnnk60h+uUr/FBlVL80Brxrd0J5ciJBNgy5aoXxMiyz5g5mnKh/zvawvX4qm4HIHrXe9Xhl0kqDsy6w0AVdRpRSkLGtdN3JQ8Zetzd7Eskb1MViIozfZ1Fwc4FoDWnO66IKzit5kqyofczmCZZaWKjk6tfEeHMnHGNP4wovonIvo9zCbjNXWxTh6mmdudJX6k5/N/X7Htc3PX4gwMe3zMfoRJr0i9BPkMxg7h2G4XC4hQ9wnKZY6VGh7pmBEuRPXYBGOn3YiDkXKa8Mh4y221kQWhqodpKSpu1QVQkqJUiCf1dqlajNWzktrm26Qj/VZvguPo7R4HT8ilFYrrrZz3mQx0GLBFJ0aQzvqq/3YfmIooZazyPcb+Fi/dK3yJAE0GbITza5xLZmMITtxrU3Hzsq7+mre0WRBPtZhXAzjozh4PxdMOFjwdvkYC1v+qzvdP8nHEF9KKdM0WSz+EkAGzXXzPMQUSCGtLhGJoeoYq702i9UfYhDunM9n7DGmYIT/pmrBhQYYCXAfBID3qgabYvc0TUHkQhmQIaWloKhEwSCNlV58STyC16lIpDIo5OZU1bCo5jzPapJkg9AES0uzqsfZSvxAIPUmsQS1kr3eoRYdK4ZWQ87N5GCdx+OBC/bvKDZm1CIYLMBMKhpSV6x8nKstHO+imQkNdb1eh2FAdYJyOFXjOqrQLgRZ4CSGbUq9pfIxLBocDKWZPVSjE2wi7VxE6zjatk1gGPs4mI9h3OV/OTtjnkq9fbNtnvt8nHr6avPx57EsS9gOE9TRgM7RKp2QBUsp8zxTX01lJvV+eATUS/qf5xk5wEoX9v6oqW8UfTWLmkUFDQYCqQSTJ0yJnGRRsFDHJLrKVC3EWPxxEYn8mQ+IZFxvZeJqgIMfCUKRkBVlu3fpq/Umy8N1z9ioWME6JHh8rbnaCLiM1u2WoyhLct1ljftYysCQD+O60jYZDt1a6gKFtM3Cs9/ZSrmxH4NiUUesAnGt+9e4pimyd6xdzRMq9Ld8zHUJszUfG+/FwXys1Ij/TnLuRXVTuEPVE0/XjOuDMe0r8C1BycaVuPn485imSVmnbOirwRbQZ/ImdaR8VvWK6N+xmir0wbEqTsBAANJMcopGx8C4Nm2qzIr3cnjwqakaUJi/5tbyMdOQa8kTpQ7jYRju9zvLqYVh66V66EgbKhwc0gZPPX112/4tH5f1lxJ0xcwf96fmsBPXMe2/WrSv1i+RN0MZcPN+v7fiL7s+5wwddUiAgbQsSxgkbRn4rrFaN7aaEf/iKaaWj9nONG1s5WMYW3gpH/OMk+r3dOMoVWd8BCtxbm9p1W7BPYIeo+IdSF28H5wbGJ/Bm3xMSTR0k+qrS7WY6n4uyscqIPJ1PHfUFURUD4xX81wc70PCxiYg7sRmwbABGE+lt+Rj3Uedc8YWbt3PxQeZuOVj7CdH1dhKKugDumv3k3zMlgm6Yu0UGA5KlVbRKd3Pp00QtjLhFWhqdi4ryxZDAn1QlQR6smhrfzX6TvdzQbKf1kerudFd37XVjGHTX2s/1v19afsgu2Hs4JjdB1DKhZm01TwbPx+Y+MhVqkqluNOSCmZMlVaRnjQMjszVMs3NrtA9IgGtv3wvCSDwcbvHNdWjwMuyIAdwc1eqI0/kujWa/1IS0q1ko2z5Bkj5PH3HTwCLy7S2E5e6+IBelwJlEAS53GyJhJbvLjewPLkesS09+TjV811jPUCIksNure8KCdq1tbZY6xuAfMy6oOJ6hIxkXNYL8WAooXZdd+Dnev6bdM621adCM2Kgogy6LtSOQMkhCWDjPTda510vbIYR8IN2A7Y7ZYyfjy7bKeDDIdwMtsNRTvSSgxX4F2TioLANjMVS7ZcQT4GD1Rcm366J9ehtkNf1RGwAXXtSOMYpXkqcqBHWBG2VA8B/Y+NmBF9NKBWAw0gwZrf9ArMx921xI57yca5nhMa1j1vwIvaRdRPAmKpuA7ZAgsx1I5uquNoGbzHK4q9UpcJYjcrjegc1j1Hlxi8mNjEE/zOlLjVCGbg3kLL4uXGlMjabtw1jHz+Ijw3DOAThpNChZfkIdjjPm0WMXwTzsWEYhmEcD/OxYRiGYRwP87FhGIZhHA/zsWEYhmEcD/OxYRiGYRwP87FhbBavFQAAF2xJREFUGIZhHA/zsWEYhmEcjx/Ex3StYI82vxHuNcMwjM/gdXxMp4nqoy6g6x1pH6NEC1APQcYrgSgIbzpeCO4YCS7FupGCFHQKDb9I9JkVVgNj9d0Iz1P7a4Vc4yHSX1WLNzMJGYY6IkQS6h6iMXaBUIPdwmgEUmKapn0nVnjwmQ+kW6pcfYbvf5sfeAX9ZQLqlnIcR0SCejPDHR9wXd9k7wJcrb2ZTPulO5ZCw77p2I6AH7Rws3XU3y05X/EyOefzb9H64sNp0+hcoXHb9vF8yqPwOj4eJRyshqENjuvUMexW4Ictz4jP45nRbLwJTkBw3azzEX0lBjeoXX/9dGetbhQRAGBsoujk6sr4fD4vy4Jgi6E3Oa1rGFok7tZirPGYNVpDqdMBQ1+MEl1Kc2CYyLGGZAhEAjqn02x63tZM1PUmnEszcK+SN9qWniAZ2lkbVsuDwvCnVrkFI/iWSodj9U+ea/xppNTaMXQmAz9osIdSiVxfkSUKp7aDurYOrsJLE9pZyaYbeINBJFsvmM+DTjTZ7CEqJTDWMNv0lNkmCG7Vd2JJhQfDeENh6Di9uwbCQNV4z20yxtkMYOFBYNrgHKVw9RoyxMDu1otLRuY2StBPTanfV7clQ9Ww5sY1UiJEChdGWgbtAkw77NNRXK6GUuGbxSecxRXul+N1fIw4ekU82DGsno624KgdKRmEjoHqtMPCi1INWoc0WdzYogD3+72bCUjl8wvqvwP0qVJpkpiJSAO21pSTQHkUjQ92wcBAT7HXNLpfrsEQ+ZP54KkiYSrwLqZEVgSCIWrmDKuXUkKkSH0XIidutYnSHsuD6uBZ1JpzVhaPx0wQ0PqUZvG09brleWbSb+dE/RdDqyH4IwoZPhP6FdfFQVgkISt+dKkGOuRsoI1cauNPEnNTx5KWOTeBxRC+ky/CK9Qt6JPIotFhhmiENvgHR1qXa1H4Ur8aBhjltJPW4Bc0NhG6dJJMG7GkWHJtrmkdV5SPh/ZEFGe0GCvForbfuBYMwVVbaQdf5bIsmlubA6d65NBNwy+CJUcyNCkGYapRQdN2VC5F+GxTE/ULUxMH7TOf1QfwOj7mGnZsNHVbTabzdaphwykeYX2E5WGukc9LDd1zu92QWKOaY3E0DAOWiuyDsYoabfh3402wGXMTHqfUoEwqN3CBrFMAlqgaRRErVpIooxVBl8tICZSPOQAwa5Qq0GisIS7vdNVP8Y5oZ+2U0uPxwMcPEQELZEq61EJrjXJVCHH1gKagWBDiGyaRDreQa/xKNA7lm+/g42ma8M1qJAx8KaPEk2DVUK9Aq2wWlPZ0OiEIUsvHGm8xV21ErpGakJXGmsyiM4A25Xa7IZ5E6gXd2ll2bGFch8jcaVWWNkuIKgL30WI6HvgURE+8KNdI2Mx5miZWHO0zip2OX4oKbbgJjYKqW/gVhIokEaDbKVrz3GorBipdlgXh10ICjY9ZSmGaXFWkDBiDXlNVkEY6QV/jM2yrhvtd4sQYUx04WyzYYvSa60tGAqUp5MsDIL10PxfVPviJbttZwoRlYJEo4oy8No4jYrawiUm3bZhYhrNlfFY2NHJzjKn3IsSFbZsxi+yC740L3mkd5g9AV4KrprUattTuhriJSIK4w6iCnKcYyWesisRRovSoqkqXEWPVxKqKldOBKn51ZKIRtDDjOt4iKwhWwycQIg8yq1LtxyySTo5c10KSgP01rwVuhU764EJtzLEGH8RFMNcFBiUf52YfgNIDcgsKPS5lNE5wWfOxDgad0HUIoYWnGpAKQCHxL7YGOh0l16YoT4PaV/IxJ58uH6vuNySAeUUJKdXQZMoNmOVJS8yKQ5rLR8aPZ43UaoOSQ57R+I/deM+8z4DQqbfJY9wNV4XJXAOX6U9CvzutI4Nu6WelxiOOcH5rRUwS/EJD4jAsCXIQP+oQ13xcy8pJFkCh/N3W+DBeysdsuP+/W9Y7TBNUCpzfAx/n7X0xUxPRJbQau43Z5py7Oh9jH4hjTWsl7Ys6uPUbC9GL2dePxwNyA79AZEjlValh71IVzvBtkAL5idJ+yTEwimFPJyxqa0aR2lMjoWqA5NJbseERzo9Jgkgq0zBzfZ2OfEw0wQQbRKVS+ZilxfJFFy4tH4c7zIrtH+Zilj9VOXWqOnbO7Gxh0jziV46icOJk+ng8oNKAMgM3UQuyCCkWmaOhkG1eq6OROSreTVCq2kxpjM21NZhbYEWVRIJUPtZ1WxYlEO5wBtdxmGv0SWaFZtfOZRfgRWiHMDuhv1IN5zxWRTQbnB3EltERHrLixY58PIqmCsXW9Rb6V5cjqinB4gw9ixrlqrbkNauvYxuNyWGWqopUF9/sXF1rZomnnmQTZauvTs26qsiSV0GywPWvtx8XCW/+/3fXiSbsVmj5GA9idg6mu4/xcehj8/HHEGYctQ4qaDbjf7EmDSJRrpbjSWy6Y2NfzDnDEJhla1WYs9JaZM/Noh5Fbe1q7YIXRilFO5xUjkHJy5qPS9WiY3DmavrSrDgaaabVJiLYOCwMLHbdmaVszDjMCpnDTNv+F4ZA8jHMiiwka6eaVZZWMxzH8XK5sI54hBbTvJaPubZAAry6bSgu18Ya6ritGpuI/fsx+3FoybzWRpT1BBV2ALR8jO5Dl6GvdU5jVqXOVC0fY/TycbJ4qH5Za54IzSqJ/Vht82Hd1g7pJAvldlpm46DkqONY9TShPHwXhwfLycLoXM0GGcUklETxlusqFgOPpQ1fky73danaDqci8w/xHZTxUj7mtIufmJRpLmIybQu1Keoid6y6x1HURFsSc7t2Hut+UbRp2IZnPAOS5VbfEei78/kcjjPp56FCQ65KNogIulbl5KtrcA4A5p/WfKymRAwSrsRh3eAcQYNWqTq3VPVmWMtjQIbaIQ2+fy7VcQ01AGyrudq/uddaV9mccTjvQJpst+mywZNI85/h43YJq92Ez4TCXBL5OK/3aaOaeARp8Fl1N2Nzp24oDNsBoiEkRR1XeEWqFn0WA/+F5kMnFnRQd1/Im1JO4GM2SGhVdCilQPBQsKFqx1GgnOdZFa24z9JiX0Lg41F2WlCloYOfyaZp4hBKYtrQ2lFlhdwgbgZTCyuiVaAODJ9GqaNFB0NoTOVj3gx8jDzJlNzSnNc2C/IxdXItHzMlfwY+VuU5hm4ohoKjDl3Wneg+j4P9gXD+5bo1HEppDyZxQwR+6hEI8nH4zFolFYagWju685HxJgIfkzv1ECHnXyaD1lc/D3yB1D6Rj1u+1xXx1mSU3pKPSz1XimmxXfPhW0UhOU9hkg258V1cy5O5mZJGZTINXqcDFa8osi1ZtbuEzvJhXmvruHO/yPS01UScrZCSC5fuI6gUrAntJgwy91kOTemnOq33c+mzussST5WqTNbMmR7La2wgIL1RyanZvinlsL6YhTE7teewydBgNY7bwMe07KAwyDMsN1UJwZtayMfjgQbJcgKtPa3OEqLu3WEwrTfosD1HkYN1vGmnt4yr/a7aXU3A7wtjiYsztnbg424jKB/rjMG6ZLENadO12iZC+7TlY446Lly6mXweP8g/l/EbgaHPcylBpYM0W3NBqrpfKh6pCKK+Ouh1MVtB10cnJJhzL5eLrgD4oi7ZkMjv93tea8m05KUq61gS6mk1K3z2PMHSVfqNoj7VA1TTNEHX17bSJCcDUTUcvtJXl6pYbh+HVn+Hjy+Xy1iNi5y2cDqL+ed67iU1Rz5CO1BRz3YImlggkI1WlqYKXeJAN8t2UBshuztMoGhStDPOtuVqYtfzM9SHb7XPTmlLNSuwVKPs5Q71wsUoFg0c++FPtJLWboeP8fhY9UlcB4S6aDHw3+6pAXZiy8copKbfWrfxv/qKtt3Q+Gx2zhjKx91vsKwPPikfj3KaETaRkM+TfKzfdRhO/CKWZVErw1Y7fAbmY+NTyHIupQXSdL0xjHVzVikFO2ZLXfsHXqckxMUpV+KpbtbAZ4mbgYS6kwg34lJtyPtBmJjWW3lb+ZiCYwDU0VQDQKENgQa1ZmWXZYHEg1dQmBsFun1JX11KmecZtWi7ZkswGt8C3UHw9Eiu3l1GUQWDoUFF2KrDZkTf5XqyhTnrYaRRNqlyrkRv8l1J9lp31cvapKUqFdBiHEtUPIyiFcNuxB2CKXK4qAsqDHR8osBq4GdW1+sV2wPP1cUKT2fBxViQcdEUKtljqFB7BPmSfaqv09OAZzk6CCBnHU5J1MJhKanDZqe5IOtrL2tFeDbhfD6D/ABaLYsoQqZq8aUJIHzRYzUM6Wa9YRi4qy5Vow/Hbe45f+yWlsdtSilQsWCvIroV7+V+/q89j2M+Nj6FFx8P+8C2xte4CdyBTmFb09nhhdxB11+jChMvL1HEVhnA6Ft7qp/ZJdvaywLaxglOxNqihpso5NZ3lNfeOtWcN8luxxZc24U9Crna9YJBPVftOii/W559Pg5Up/m3x7oCuN7qvjc3mn/uG2jBrR4hEx6dD/enemxdS6vnkqd6iENbErX4cmcV5mPDMAzDOB7mY8MwDMM4HuZjwzAMwzge5mPDMAzDOB7mY8MwDMM4HuZjwzAMwzge5mPDMAzDOB6v42O6q+UBuA8AD/7kw5p/Fu4UwzCMz+B1fMxwLq0vtOehXmb0GD59zu08SG9qW3iXF7S87drtb2LLp496mmTUmq0wUOplopuGYFSZSeILta/e6XR9XarRpdSPOopNp5J5HUOGUB+W/G9bKoxAOLTaGq50S6mlCmnGJrrAJ133oY77mey3c1lHpIAL0jdf+uFi08PoPr7Jo6FhfB8OIBL4sfvYs5x9gkv3N7//ro+hgHd5GoLfnE+K+/8MxhpvBz/hCRINThc8qUZ1pce+bia4ztt+g/mKVEOqbaWk6x+G5lUvPHCTSe968IxIB5alRoRNNXo5fTeGt0xrp/zBDaS+bhgGuEXcctM4rd33d/kYziZRHUS/YRiG/c9qyx0VnAXuBAZG+8D9J4NeECwG6lV6kQaYUhdAbWmRf4jykmsYYG2B4PJMg/zwX8F9EmPGcO315c4ODeOTOICPNe4eJ0H8pFfSJOG+4SyUDsSZD755Tha4See3pX6BmCyCpze8lxF4MLvpfE0npVMNyJhrpHEG7AsTE96lEzqe0nlBI0UyASb03zg1qPdXhtgjAZOPcw1rWGpYHkbL0dzA4hoPsZSCIHFIEBzjQVpl6KRpHW2NLpSJlo/hnDZXR7hJAkyVUjAIsc5Agcvat22pLpERAKqIE2B45dWqUfCFm18kw3hgQ8EBL8bYJJFfOXrhp5pue+HKmG51lYpaMDa7tnmu7pf1q9T+ZZ9y6AYqRdlUUbSlKWHUv+5iCwoP+HZmtF0Mm5DhzkJNG+F2u+kig5nw8e+LmmcYH8Or+RhTA6/pRpxfIL9Y/AuTMsKC5nXYDb1WZ/rkcp3xQ4RjzvVKCeM6uifkKswImBQwK+FZlY/xCCZQiCmoDimfohgoARNNqS5V4UD1904N7NPuPMv5ujS9T1Ev10gJDDwA8iCXFImzqXyMzNFBW6pdUOntdkMOpYb2S+twtixPbpTYIfAA2Z3Ui2LnGh25Fb/o95/rS4xnDCENPp9roMZUY9JxeZFrdHdG2MVQHJt49U9iWRbWK9cAGJqATU2Jn1XjsomdhVgCXJy1PEpHzSx5qZE3S42GXmSJwHrpOonrMO0pXXPoTV4z/J/GAUTkxI81nWF8B17Nx13zGOdrWOyYWDWBMFBt8bFeM5Mgx2jOqRd9TNOrRVAZpUi4+GA8Zrg0hpnjW1DNy+Wic3pZB/bqihQ/H20wpZAArYc4ZWkdjjDVyGWMt6it0V2goBNhoWQINhJtXhv1u9AuIBFqaTlOUg3pmGqcvkliSurIxFO838b2SdVkzmB5bL02RiReoZZvFhsG5i6e667/wDYn/7EKMO5OAlZHG4EtyfriXwi+mSSS4NgE4lSMNebj2Kj9ycddaE+xYCxVUBjsFOCXfnrGv4eX8nGQApOEXePSeIePdb4ua5k48DEtarwZcs41fvWWfBzIXukhVSptTW6BQsLPtCYDSMw7drtfAYhEmPsg/OW1in6ssVRTSthjD6VrbhSnIcI8+zdLdBdIopCloG0u2wZLKFe7LUzmxrMchKGPSpW9IEullEKYF40JiFJRsKNBF/XFTRSGVYCszNdRPh5r8HMNK6mtATmPub2XjxHmb6oxLpk/6gjdtRrX8S6KvADKRpkY/yVNJtkioCGP2CmhsoGPcw3jONa4nMq+oTpvmqsphesc4m0fxk/DS887hRCt7Vy5w8ec6XKNZ6kfYct8GtS2zZlPtbyLa2bORXeYDnT1vVWMfT7mAbDya8E4uIGPs+xxAzerNZR8TB6FuRTkhMk9QNn98XiA3XNV6ibZSgaAY8i4LWHjLblqfRl7OOiltbTkY6wDoEHlK2hehR19qjHaStV8pLUUzmHcBqDVeM/4ZDhyoGFGGdrl7PMI66HU216H1401cjNfBAsOig1+hWEYhWdhtpYIIVzxWOMhdvmYWXHLWJszWgyJacgv68+ZoB0EMv2Xx8szjM/gdXxMBSOPOvB0x1SjTwd9dak6QyTApEBdZaBSfaqVGJRQ+ZbwOv2A9XAOJprP8zH0eEWibf9qPoZ+PlShJQaqCodhQHocEGJTME3QnXQNe6kaeqHbYM6hYLhP5Uden54KuhZKgWU9TpTRU9VdY5BgEEJPjgNRVO2imniFvjQMVyhyMbb5Ov43Vzs3ZU3e4UeURIHcfjjvQpc7Wd/QzjQ94O3jWhVcat91lwhsZw4AVjbt6qtZmLa0qvNvu1VTsndKHSQ+E2X8KLyOj0MYaq6v8VM3JOtTbQL8DIJ1K2fvSN48JIOFv2aiW3m5lIYg2/Kxbj4qa2leUxIQbpCeduXfy8fLsrQifpePVevASRy73tBNqjLFHrqx2i/C0SAINGhJbMZJsgsB6cH6JAwI8VqwnDP0zBiTkMtVmA7zPuU/ym1aJNpHcj14g235oWWCfMxdYCx/y8eANk6u27lRWsrHkPbe7DKoFtr73Wdz3bo11k1zVH5w6zJi13OtjHZDYVozgW6LY2JWdqzKAG1n7YjW0N4ibPLqNiM/7d9uKjL+PdiRhfEpgIRAP9yFDpKjcbedgnGhbBrmylwB7sG7sBqDoIZT7OAkcLP699AMc87hkBKgW3xJjeGETJFNyDqhJzliN9XjaqT2sZo8tTxb2x30dWgZXZrQbs1k2C4+NmdtmT917y26R57KBsOhRmhnmsaDtrlUOxTWB9Bjg4/H9emyZVlUmYxjbJB6sQjW1SpFZ9qP90uL3sFw0rOUrKkuBWjntrLa+GkwHxufAuXFLooczgEJhQmd26PAEzhOBumZVJrkMDrSgxjocoRHjQMfk4e4aUgB/oDdOldtMBgLh6+ofc31wDRLkqveFa8mDYOcUF/cVPMwXz32TijpsoNvwUu58WoUC7cuDros+yR4LLj9F0Vh6ACw7mkfx4lh9gIWZ2zJUg80agm5tAp2/Sx799hKqrVq6bkIxea1qobaFxzlynXLQq6bydFrFpSNHwLzsfEpfMAC915LZ0gPm2t4rxpin8+2Nbvu5MNjbOGmHmMrpeR6nrh9Ha/Haj9+F0IBPsPBIdstfTVIDrbe7rvu9zuJFmzXrXv32bFa5d9V2qmeKnwetE9xA0e4byuy8UNgPjYMwzCM42E+NgzDMIzj8Z/7/i8BbT/YrDHP8290y2wYhmEYL0Yqu074jHcB20HHtffEtPYjyD204/rwqPEC5HpuLdwv9XjPVC3TH7Ap3u93WyINw/gw/jvRMdZz/diMSp+02Dx5BLsZhmF8Gbjfvr1jfCs0dCa21vNnuAjYuv/PIOiPbT/ug/57oXU/utf+TYxyrinX4INfAviOzvWclfEDofGgeHOLKbteVA3jtyMcgjcfG4ZhGP+ZbKZ6KowmGP4r16NrjADW3jGeR7BwmY8NwzAM43iYjw3DMAzjeJiPDcMwDON4mI8NwzAM43j8DxGW8aV+8TAWAAAAAElFTkSuQmCC" alt="" />

三、捕捉异常

我们可以使用 try/except 来实现异常的捕捉处理。

>>> try:
res = 2/0
except ZeroDivisionError:
print "Error:Divisor must not be zero!" Error:Divisor must not be zero!

看,我们真的捕获到了ZeroDivisionError异常!那如果我想捕获并处理多个异常怎么办呢?有两种办法,一种是给一个except子句传入多个异常类参数,另外一种是写多个except子句,每个子句都传入你想要处理的异常类参数。甚至,这两种用法可以混搭呢!

多个except 子句

try:
x = input('Enter the first number: ')
y = input('Enter the second number: ')
print x/y
except ZeroDivisionError:
print "The second number can't be zero!"
except TypeError: # 对字符的异常处理
  print "Please enter a number!"
  
#再来运行:
>>>
Enter the first number: 10
Enter the second number: 'hello,word'
Please enter a number!

一个块捕捉多个异常

如果需要用一个块捕捉多个异常,那么可以将它们作为元组列出。

try:
x = input('Enter the first number: ')
y = input('Enter the second number: ')
print x/y
except (ZeroDivisionError,TypeError,NameError): # 将错误类型以列表方式列出
print "Yout numbers were bogus..."

try ... except...else 语句

现在我们来说说这个else语句。Python中有很多特殊的else用法,比如用于条件和循环。放到try语句中,其作用其实也差不多:就是当没有检测到异常的时候,则执行else语句。

while True:
try:
x = input('Enter the first numbre: ')
y = input('Enter the second numbre: ')
value = x/y
print 'x/y is',value
except:
print 'Invalid input,please try again.'
else:
break # 这里的循环只在没有异常引发的情况才会退出

finally 子句

finally子句是无论是否检测到异常,都会执行的一段代码,我们可以丢掉except子句和else子句,单独使用try...finally,也可以配合except等使用。

try:
s = 1/0
#except Exception,e:
except ZeroDivisionError, e:
print 'Error:%s' %e
finally:
print 'ok'

完整的语法结构如下:

try:
...
except exception1:
...
except exception2:
...
except:
...
else:
...
finally:
...

如果try中有异常发生时,将执行异常的归属,执行except。异常层层比较,看是否是exception1, exception2...,直到找到其归属,执行相应的except中的语句。