二叉树系列 - 二叉树的深度,例 [LeetCode]

时间:2020-12-03 07:06:43

二叉树的深度的概念最值得注意的地方,在于 到"叶子"节点的距离。

一般来说,如果直接说“深度”,都是指最大深度,即最远叶子的距离。

这里放两道例题,最小深度和最大深度。

1. 二叉树的最小深度

Given a binary tree, find its minimum depth.

The minimum depth is the number of nodes along the shortest path from the root node down to the nearest leaf node.

 /**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int minDepth(TreeNode *root) {
}
};

因为深度是必须到叶子节点的距离,因此使用深度遍历时,不能单纯的比较左右子树的递归结果返回较小值,因为对于有单个孩子为空的节点,为空的孩子会返回0,但这个节点并非叶子节点,故返回的结果是错误的。

因此,当发现当前处理的节点有单个孩子是空时,返回一个极大值INT_MAX,防止其干扰结果。

 class Solution {
public:
int minDepth(TreeNode *root) {
if(!root) return ;
if(!root -> left && !root -> right) return ; //Leaf means should return depth.
int leftDepth = + minDepth(root -> left);
leftDepth = (leftDepth == ? INT_MAX : leftDepth);
int rightDepth = + minDepth(root -> right);
rightDepth = (rightDepth == ? INT_MAX : rightDepth); //If only one child returns 1, means this is not leaf, it does not return depth.
return min(leftDepth, rightDepth);
}
};

当然,这道题也能用层次遍历来做。

class Solution {
struct LevNode{
TreeNode* Node;
int Lev;
};
public:
int minDepth(TreeNode *root) {
if(NULL == root) return ;
queue<LevNode> q;
LevNode lnode;
lnode.Node = root;
lnode.Lev = ;
q.push(lnode);
while(!q.empty()){
LevNode curNode = q.front();
q.pop();
if(NULL == (curNode.Node) -> left && NULL == (curNode.Node) -> right)
return (curNode.Lev);
if(NULL != (curNode.Node) -> left){
LevNode newNode;
newNode.Node = (curNode.Node) -> left;
newNode.Lev = (curNode.Lev + );
q.push(newNode);
}
if(NULL != (curNode.Node) -> right){
LevNode newNode;
newNode.Node = (curNode.Node) -> right;
newNode.Lev = (curNode.Lev + );
q.push(newNode);
}
}
return ;
}
};

对于这道题,LeetCode 两种解法的时间都是 48ms

2. 二叉树的最大深度

Given a binary tree, find its maximum depth.

The maximum depth is the number of nodes along the longest path from the root node down to the farthest leaf node.

最大深度也是到叶子节点的长度,但是因为是求最大深度,单个孩子为空的非叶子节点不会干扰到结果,因此用最简洁的处理方式就可以搞定。

/**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int maxDepth(TreeNode *root) {
if(!root) return ;
int leftDepth = maxDepth(root -> left) + ;
int rightDepth = maxDepth(root -> right) + ;
return max(leftDepth, rightDepth);
}
};