POJ 3356 水LCS

时间:2022-11-01 06:57:34

题目链接:

http://poj.org/problem?id=3356

AGTC
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 13855   Accepted: 5263

Description

Let x and y be two strings over some finite alphabet A. We would like to transform x into y allowing only operations given below:

  • Deletion: a letter in x is missing in y at a corresponding position.
  • Insertion: a letter in y is missing in x at a corresponding position.
  • Change: letters at corresponding positions are distinct

Certainly, we would like to minimize the number of all possible operations.

Illustration

A G T A A G T * A G G C

| | | | | | |

A G T * C * T G A C G C

Deletion: * in the bottom line
Insertion: * in the top line
Change: when the letters at the top and bottom are distinct

This tells us that to transform x = AGTCTGACGC into y = AGTAAGTAGGC we would be required to perform 5 operations (2 changes, 2 deletions and 1 insertion). If we want to minimize the number operations, we should do it like

A  G  T  A  A  G  T  A  G  G  C

| | | | | | |

A G T C T G * A C G C

and 4 moves would be required (3 changes and 1 deletion).

In this problem we would always consider strings x and y to be fixed, such that the number of letters in x is m and the number of letters in y is n where nm.

Assign 1 as the cost of an operation performed. Otherwise, assign 0 if there is no operation performed.

Write a program that would minimize the number of possible operations to transform any string x into a string y.

Input

The input consists of the strings x and y prefixed by their respective lengths, which are within 1000.

Output

An integer representing the minimum number of possible operations to transform any string x into a string y.

Sample Input

10 AGTCTGACGC
11 AGTAAGTAGGC

Sample Output

4

Source

分析:
两个序列中最长的序列长度减去LCS的长度
代码如下:
#include<cstring>
#include<cstdio>
#include<string>
#include<iostream>
#include<algorithm>
#define max_v 1005
using namespace std;
char x[max_v],y[max_v];
int dp[max_v][max_v];
int l1,l2;
int main()
{
while(~scanf("%d %s",&l1,x))
{
scanf("%d %s",&l2,y);
memset(dp,,sizeof(dp));
for(int i=; i<=l1; i++)
{
for(int j=; j<=l2; j++)
{
if(x[i-]==y[j-])
{
dp[i][j]=dp[i-][j-]+;
}
else
{
dp[i][j]=max(dp[i-][j],dp[i][j-]);
}
}
}
int t=l1;
if(l2>l1)
t=l2;
printf("%d\n",t-dp[l1][l2]);
}
return ;
}