poj 2533 Longest Ordered Subsequence 最长递增子序列

时间:2021-10-03 06:48:25

作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4098562.html

题目链接:poj 2533 Longest Ordered Subsequence 最长递增子序列

使用$len[i]$表示序列中所有长度为$i$的递增子序列中最小的第$i$个数的值为$len[i]$。对于序列的第j个数$arr[j]$,在$len$中二分查找,找到最后一个小于$arr[j]$的数$len[k]$,如果$len[k]$是序列$len$中最后的一个数,那么在其尾部添加一个数$arr[j]$,否则另$len[k+1]=arr[j]$,直到遍历完$arr$。时间复杂度为O(nlogn)。

代码如下:

 #include <cstdio>
#include <cstdlib>
#include <iostream>
#include <cstring>
#include <vector>
#define MAXN 1010
using namespace std;
int arr[MAXN];
int n;
int bs(vector<int> &arr,int num)
{
int b = , e = arr.size()-;
int mid;
while( b <= e )
{
mid = (b+e)/;
if( arr[mid] <= num )
{
b = mid+;
}
else
{
e = mid-;
}
}
return b;
}
int solve()
{
if( n == )
{
return ;
}
vector<int> len;
len.push_back(arr[]);
for( int i = ; i < n ; i++ )
{
if( len[len.size()-] < arr[i])
{
len.push_back(arr[i]);
}
else
{
len[bs(len, arr[i])] = arr[i];
}
}
return len.size();
}
int main(int argc, char *argv[])
{
while( scanf("%d", &n) != EOF )
{
for( int i = ; i < n ; i++ )
{
scanf("%d", &arr[i]);
}
printf("%d\n", solve());
}
}

同样还有一种$O(n^2)$的动态规划算法。使用$dp[i]$表示到第$i$个数最长的递增子序列的长度。每次用j从0到$i-1$遍历数组,如果发现arr[j]<arr[i],则说明其长度可以加1,最终取最大的长度作为dp[i],即:

\begin{equation}
dp[i] = min(dp[j])+1,(j<i,arr[j]<arr[i])
\end{equation}

代码如下:

 #include <cstdio>
#include <cstdlib>
#include <iostream>
#include <cstring>
#define MAXN 1010
using namespace std;
int dp[MAXN];
int arr[MAXN];
int n;
int solve()
{
if( n == )
{
return ;
}
memset(dp, , sizeof(dp));
dp[] = ;
int res = ;
for( int i = ; i < n ; i++ )
{
int tmp = ;
for( int j = ; j < i ; j++ )
{
if( arr[i] > arr[j] )
{
tmp = max(tmp, dp[j]);
}
}
dp[i] = tmp+;
res = max(res, dp[i]);
}
return res;
}
int main(int argc, char *argv[])
{
while(scanf("%d", &n) != EOF)
{
for( int i = ; i < n ; i++ )
{
scanf("%d", &arr[i]);
}
printf("%d\n",solve());
}
}