转自http://blog.sina.com.cn/s/blog_5ebcc0240101pnrj.html
matlab遗传算法工具箱函数及实例讲解
(2014-01-10 13:03:57)分类: matlab |
最近研究了一下遗传算法,因为要用遗传算法来求解多元非线性模型。还好用遗传算法的工具
箱予以实现了,期间也遇到了许多问题。借此与大家分享一下。
首先,我们要熟悉遗传算法的基本原理与运算流程。
基本原理:遗传算法是一种典型的启发式算法,属于非数值算法范畴。它是模拟达尔文的自然
选择学说和自然界的生物进化过程的一种计算模型。它是采用简单的编码技术来表示各种复杂
的结构,并通过对一组编码表示进行简单的遗传操作和优胜劣汰的自然选择来指导学习和确定
搜索的方向。遗传算法的操作对象是一群二进制串(称为染色体、个体),即种群,每一个染
色体都对应问题的一个解。从初始种群出发,采用基于适应度函数的选择策略在当前种群中选
择个体,使用杂交和变异来产生下一代种群。如此模仿生命的进化进行不断演化,直到满足期
望的终止条件。
运算流程:
Step 1:对遗传算法的运行参数进行赋值。参数包括种群规模、变量个数、交叉概率、变异概
率以及遗传运算的终止进化代数。
Step 2:建立区域描述器。根据轨道交通与常规公交运营协调模型的求解变量的约束条件,设
置变量的取值范围。
Step 3:在Step 2的变量取值范围内,随机产生初始群体,代入适应度函数计算其适应度值。
Step 4:执行比例选择算子进行选择操作。
Step 5:按交叉概率对交叉算子执行交叉操作。
Step 6:按变异概率执行离散变异操作。
Step 7:计算Step 6得到局部最优解中每个个体的适应值,并执行最优个体保存策略。
Step 8:判断是否满足遗传运算的终止进化代数,不满足则返回Step 4,满足则输出运算结果
。
其次,运用遗传算法工具箱。
运用基于Matlab的遗传算法工具箱非常方便,遗传算法工具箱里包括了我们需要的各种函数库
。目前,基于Matlab的遗传算法工具箱也很多,比较流行的有英国设菲尔德大学开发的遗传算
法工具箱GATBX、GAOT以及Math Works公司推出的GADS。实际上,GADS就是大家所看到的
Matlab中自带的工具箱。我在网上看到有问为什么遗传算法函数不能调用的问题,其实,主要
就是因为用的工具箱不同。因为,有些人用的是GATBX带有的函数,但MATLAB自带的遗传算法
工具箱是GADS,GADS当然没有GATBX里的函数,因此运行程序时会报错,当你用MATLAB来编写
遗传算法代码时,要根据你所安装的工具箱来编写代码。
以GATBX为例,运用GATBX时,要将GATBX解压到Matlab下的toolbox文件夹里,同时,set path
将GATBX文件夹加入到路径当中。
最后,编写Matlab运行遗传算法的代码。
这块内容主要包括两方面工作:1、将模型用程序写出来(.M文件),即目标函数,若目标函
数非负,即可直接将目标函数作为适应度函数。2、设置遗传算法的运行参数。包括:种群规
模、变量个数、区域描述器、交叉概率、变异概率以及遗传运算的终止进化代数等等。
为方便大家理解,以下为例:
求解模型:TC=x1+2*x2+3*x3+4*x4,-1<=x<=0
根据上面的求解模型,可以写出模型的.M文件如下,即适应度函数
function TC=TotalCost(x)
TC=0;
for i=1:4
TC=TC+i*x(i);
end
然后,可以利用遗传算法工具箱来写出遗传算法运行的主要程序,如下:
%定义遗传算法参数
NIND=20; %个体数目
MAXGEN=200; %最大遗传代数
NVAR=4; %变量维数
PRECI=20; %变量的二进制位数
GGAP=0.9; %代沟
trace=zeros(MAXGEN,2); %算法性能跟踪
%建立区域描述器
FieldD=[rep(PRECI,[1,NVAR]);rep([-1;0],[1,NVAR]);rep([1;0;1;1],[1,NVAR])];
Chrom=crtbp(NIND,NVAR*PRECI); %创建初始种群
gen=0; %代计数器
ObjV=TotalCost(bs2rv(Chrom,FieldD)); %计算初始种群个体的目
标函数值
while gen
FitnV=ranking(ObjV); %分配适应度值
SelCh=select('sus',Chrom,FitnV,GGAP); %选择
SelCh=recombin('xovsp',SelCh,0.7); %重组
SelCh=mut(SelCh,0.07); %变异
ObjVSel=TotalCost(bs2rv(SelCh,FieldD)); %计算子代目标函数值
[ChromObjV]=reins(Chrom,SelCh,1,1,ObjV,ObjVSel); %重插入
gen=gen+1;
%输出最优解及其对应的10个变量的十进制值
[Y,I]=min(ObjVSel);
Y,X=bs2rv(Chrom(I,:),FieldD);
trace(gen,1)=min(ObjV);
trace(gen,2)=sum(ObjV)/length(ObjV);
end
plot(trace(:,1));hold on;
plot(trace(:,2),'-.');grid;
legend('种群均值的变换','最优解的变化');
显然,根据模型的特征,最优解应该是-10,自变量分别取-1,-1,-1,-1。大家可以安装
GATBX,在Matlab中建立目标函数的.M文件以及遗传算法主程序的文件来进行试验。
希望以上内容对学习和运用遗传算法的同仁有所帮助,因为本人也是初学,因此有不详之处请
见谅。
////////////////////////////////////////////////////
matlab遗传算法工具箱函数及实例讲解(转引)
gaotv5
核心函数:
(1)function[pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始种群的生
成函数
【输出参数】
pop--生成的初始种群
【输入参数】
num--种群中的个体数目
bounds--代表变量的上下界的矩阵
eevalFN--适应度函数
eevalOps--传递给适应度函数的参数
options--选择编码形式(浮点编码或是二进制编码)[precisionF_or_B],如
precision--变量进行二进制编码时指定的精度
F_or_B--为1时选择浮点编码,否则为二进制编码,由precision指定精度)
(2)function [x,endPop,bPop,traceInfo] =ga(bounds,evalFN,evalOps,startPop,opts,...
termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)--遗传
算法函数
【输出参数】
x--求得的最优解
endPop--最终得到的种群
bPop--最优种群的一个搜索轨迹
【输入参数】
bounds--代表变量上下界的矩阵
evalFN--适应度函数
evalOps--传递给适应度函数的参数
startPop-初始种群
opts[epsilonprob_ops display]--opts(1:2)等同于initializega的options参数,第三
个参数控制是否输出,一般为0。如[1e-6 1 0]
termFN--终止函数的名称,如['maxGenTerm']
termOps--传递个终止函数的参数,如[100]
selectFN--选择函数的名称,如['normGeomSelect']
selectOps--传递个选择函数的参数,如[0.08]
xOverFNs--交叉函数名称表,以空格分开,如['arithXover heuristicXover
simpleXover']
xOverOps--传递给交叉函数的参数表,如[2 0;2 3;2 0]
mutFNs--变异函数表,如['boundaryMutation multiNonUnifMutationnonUnifMutation
unifMutation']
mutOps--传递给交叉函数的参数表,如[4 0 0;6 100 3;4 100 3;4 0 0]
注意】matlab工具箱函数必须放在工作目录下
【问题】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9
【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,
变异概率为0.08
【程序清单】
%编写目标函数
function[sol,eval]=fitness(sol,options)
x=sol(1);
eval=x+10*sin(5*x)+7*cos(4*x);
%把上述函数存储为fitness.m文件并放在工作目录下
initPop=initializega(10,[09],'fitness');%生成初始种群,大小为10
[x endPop,bPop,trace]=ga([09],'fitness',[],initPop,[1e-6 1
1],'maxGenTerm',25,'normGeomSelect',...
[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %次遗传迭代
运算借过为:x =
7.856224.8553(当x为7.8562时,f(x)取最大值24.8553)
注:遗传算法一般用来取得近似最优解,而不是最优解。
遗传算法实例2
【问题】在-5<=Xi<=5,i=1,2区间内,求解
f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2+x2.^2)))-exp(0.5*(cos(2*pi*x1)+cos
(2*pi*x2)))+22.71282的最小值。
【分析】种群大小10,最大代数1000,变异率0.1,交叉率0.3
【程序清单】
%源函数的matlab代码
function [eval]=f(sol)
numv=size(sol,2);
x=sol(1:numv);
eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)
+22.71282;
%适应度函数的matlab代码
function[sol,eval]=fitness(sol,options)
numv=size(sol,2)-1;
x=sol(1:numv);
eval=f(x);
eval=-eval;
%遗传算法的matlab代码
bounds=ones(2,1)*[-5 5];
[p,endPop,bestSols,trace]=ga(bounds,'fitness')