数字图像处理(matlab)

时间:2021-02-18 06:47:13


图像反转:

代码:

I=imread('coins.png');

R=255-I;

subplot(1,2,1);

imshow(I);

title('原图');

subplot(1,2,2);

imshow(R);

title('反转后');

 

二值图像:

代码:

I=imread('coins.png')

YZmax=max(max(I))

YZmin=min(min(I))

initialYZ=(YZmax+YZmin)/2

flag=1

[m,n]=size(I)

while(flag)

   maxg=0

   ming=0

   maxgsum=0

   mingsum=0

    for i=1:m

       for j=1:n

           tmp=I(i,j)

           if(tmp>initialYZ)

                maxg=maxg+1

                maxgsum=maxgsum+double(tmp)

           else

                ming=ming+1

                mingsum=mingsum+double(tmp)

           end

       end

    end

   l1=maxgsum/maxg

   l2=mingsum/ming

   YZtmp=uint8((l1+l2)/2)

    if(YZtmp==initialYZ)

       flag=0;

    else

       initialYZ=YZtmp

    end

end

newI=im2bw(I,double(initialYZ)/255)

imshow(newI)

 

 

 

 

 

 

 

 

 

 

 

 

8连通域:

 

代码:

I=imread('coins.png');

I=I>=128;%二值图像

[m n]=size(I);

I=[zeros(m,1) I  zeros(m,1)];

I=[zeros(1,n+2);I;zeros(1,n+2)];

top=1;

tail=1;

num=0;%连通域个数

nb=[-1 -1;-1 0;-1 1;0 1;1 1;1 0;1 -1;0 -1];%8个方向

for i=2:m+1

    for j=2:n+1

       if(I(i,j)==1)

          num=num+1;

          I(i,j)= mod((i+j),254)+1;%只是想每一块连通域显示不同的颜色

          k=1;

          p(top,1)=i;

          p(top,2)=j;

          p(top,3)=k;

          top=top+1;

          while top~=tail %站内没有东西就代表一个连通域查找结束

              top=top-1;

              x=p(top,1);

              y=p(top,2);

              d=p(top,3);

              while d<=8%循环八个方向

                  subx= x+nb(d,1);

                  suby= y+nb(d,2);

                 

                  if(I(subx,suby)==1)%如果这个点8个方向中有一个方向是连通的就把这个点压进栈

                      p(top,1)=x;

                      p(top,2)=y;

                      p(top,3)=d+1;

                      top=top+1;

                      I(subx,suby)=mod((i+j),254)+1;

                      x=subx;%然后利用新找到的连通点循环这个过程

                      y=suby;

                      d=0;

                  end

                 

                  d=d+1;

              end

          end

       end

    end

end

disp(num);

imshow(I,[]);

 

图像加噪声:

代码:

I=imread('cameraman.tif');

J1=imnoise(I,'salt & pepper',0.1); %椒盐

J2=imnoise(I,'gaussian',0.10); %gauss

subplot(1,3,1)'

imshow(I);

title('原图');

subplot(1,3,2)'

imshow(J1);

title('椒盐噪声');

subplot(1,3,3)'

imshow(J2);

title('高斯噪声');

 

 

均值平滑:

代码:

I=imread('cameraman.tif');

J1=imnoise(I,'salt & pepper',0.1); %椒盐

[m,n]=size(J1);

J1=double(J1);

subJ1=zeros(m,n);

subJ1(1,1)=(J1(1,1)+J1(1,2)+J1(2,2)+J1(2,1))/4;%角的特殊情况

subJ1(1,n)=(J1(1,n)+J1(1,n-1)+J1(2,n-1)+J1(2,n))/4;

subJ1(m,1)=(J1(m,1)+J1(m,2)+J1(m-1,2)+J1(m-1,1))/4;

subJ1(m,n)=(J1(m,n)+J1(m,n-1)+J1(m-1,n-1)+J1(m-1,n))/4;

for i=2:n-1 %4条边的特殊情况

   subJ1(1,i)=(J1(1,i-1)+J1(1,i)+J1(1,i+1)+J1(2,i-1)+J1(2,i)+J1(2,i+1))/6;

end

for i=2:n-1 %4条边的特殊情况

   subJ1(m,i)=(J1(m,i-1)+J1(m,i)+J1(m,i+1)+J1(m-1,i-1)+J1(m-1,i)+J1(m-1,i+1))/6;

end

for i=2:m-1 %4条边的特殊情况

   subJ1(i,1)=(J1(i-1,1)+J1(i,1)+J1(i+1,1)+J1(i-1,2)+J1(i,2)+J1(i+1,2))/6;

end

for i=2:m-1 %4条边的特殊情况

   subJ1(i,n)=(J1(i-1,n)+J1(i,n)+J1(i+1,n)+J1(i-1,n-1)+J1(i,n-1)+J1(i+1,n-1))/6;

end

for i=2:m-1 %除了4个角和4条边的其他所有点的情况

   for j=2:n-1

      subJ1(i,j)=(J1(i-1,j-1)+J1(i-1,j)+J1(i-1,j+1)+J1(i,j-1)+J1(i,j)+J1(i,j+1)+J1(i+1,j-1)+J1(i+1,j)+J1(i+1,j+1))/9;

   end

end

imshow(subJ1,[]);

title('均值平滑');

 

中值平滑

代码:

I=imread('cameraman.tif');

J1=imnoise(I,'gaussian',0.10); %gauss

[m,n]=size(J1);

subJ1=zeros(m,n);

A=[J1(1,1) J1(1,2) J1(2,2) J1(2,1)];%角的特殊情况

subJ1(1,1)=median(A);

A=[J1(1,n) J1(1,n-1) J1(2,n-1) J1(2,n)];

subJ1(1,n)=median(A);

A=[J1(m,1) J1(m,2) J1(m-1,2) J1(m-1,1)];

subJ1(m,1)=median(A);

A=[J1(m,n) J1(m,n-1) J1(m-1,n-1) J1(m-1,n)];

subJ1(m,n)=median(A);

for i=2:n-1%边的特殊情况

   A=[J1(1,i-1) J1(1,i) J1(1,i+1) J1(2,i-1) J1(2,i) J1(2,i+1)];

   subJ1(1,i)=median(A);

end

for i=2:n-1%边的特殊情况

   A=[J1(m,i-1) J1(m,i) J1(m,i+1) J1(m-1,i-1) J1(m-1,i) J1(m-1,i+1)];

   subJ1(m,i)=median(A);

end

for i=2:m-1%边的特殊情况

   A=[J1(i-1,1) J1(i,1) J1(i+1,1) J1(i-1,2) J1(i,2) J1(i+1,2)];

   subJ1(i,1)=median(A);

end

for i=2:m-1%边的特殊情况

   A=[J1(i-1,n) J1(i,n) J1(i+1,n) J1(i-1,n-1) J1(i,n-1) J1(i+1,n-1)];

   subJ1(i,n)=median(A);

end

for i=2:m-1 %除了角和边的情况

   for j=2:n-1

      A=[J1(i-1,j-1) J1(i-1,j) J1(i-1,j+1) J1(i,j-1) J1(i,j) J1(i,j+1)J1(i+1,j-1) J1(i+1,j) J1(i+1,j+1)];

      subJ1(i,j)=median(A);

   end

end

imshow(subJ1,[]);

 

 

 

 

 

 

 

 

soble算子和laplace算子锐化

 

代码:

I=imread('cameraman.tif');

subplot(2,2,1),imshow(I);

title('原始图像');

 

H=fspecial('sobel');     %选择sobel算子

J=filter2(H,I1);            %卷积运算

subplot(2,2,3),imshow(J);

title('sobel算子锐化图像');

 

h=[0 1 0;1 -4 1;0 1 0];   %拉普拉斯算子

J1=conv2(I,h,'same');           %卷积运算

subplot(2,2,4),imshow(J1);

title('拉普拉斯算子锐化图像');

 

 

 

 

 

直方图和直方图均衡化:

代码:

I=imread('cameraman.tif');

subplot(2,2,1);%画子图

imshow(I);

title('原图');

num=zeros(1,256);

newnum=zeros(1,256);

[m,n]=size(I);

for i=1:m

   for j=1:n

     num(I(i,j)+1)= 1+ num(I(i,j)+1);%统计各像素的总个数

   end

end

x=0:255;

y=num/(m*n);%求出各像素点的百分比

subplot(2,2,2);

bar(x,y,0);

xlabel('灰度值');

ylabel('概率');

title('原图的直方图');

for i=2:256

   y(i)=y(i)+y(i-1); %计算累计直方图分布

end

y=y*256; %找出直方图均衡化后原来的像素点所对应的新像素点

y=round(y);%四舍五入

for i=1:m

   for j=1:n

     I(i,j)= y(I(i,j)+1)-1;%更改原图成为直方图均衡化后的图

     newnum(I(i,j)+1)= 1+ newnum(I(i,j)+1);%统计新图各像素点的个数

   end

end

y2=newnum/(m*n);%求出各像素点的百分比

subplot(2,2,3);%画子图

imshow(I);

title('直方图均衡化后的效果');

subplot(2,2,4);

bar(x,y2,0);

xlabel('灰度值');

ylabel('概率');

title('直方图均衡化后的直方图');

 

 

 

 

 

 

 

 

 

理想的滤波器:

 

理想低通滤波器(ILPF):  d=10

代码:

I=imread('cameraman.tif');

J=imnoise(I,'salt & pepper',0.1);

f=double(J);

subJ=fftshift(fft2(f));%空间域到频率域

[m,n]=size(subJ);

for i=1:m

   for j=1:n

      a=1;

      if(sqrt((i-m/2)^2+(j-n/2)^2)>10)

        a=0;

      end

     subJ(i,j)=subJ(i,j)*a;

   end

end

resJ=uint8(real(ifft2(subJ)));%频率域到空间域

imshow(resJ,[]);

 

 

 

 

 

 

 

理想高通滤波器(IHPF) d=10

代码:

I=imread('cameraman.tif');

J=imnoise(I,'salt & pepper',0.1);

f=double(J);

subJ=fftshift(fft2(f));%空间域到频率域

[m,n]=size(subJ);

for i=1:m

   for j=1:n

      a=1;

      if(sqrt((i-m/2)^2+(j-n/2)^2)<=10)

        a=0;

      end

     subJ(i,j)=subJ(i,j)*a;

   end

end

resJ=uint8(real(ifft2(subJ)));%频率域到空间域

imshow(resJ,[]);

 

 

 

 

 

 

 

 

高斯低通滤波器(GLPF):

代码:

I=imread('cameraman.tif');

J1=imnoise(I,'salt & pepper',0.1);

f=double(J1);

subJ=fftshift(fft2(f));%空间域到频率域

[m,n]=size(subJ);

for i=1:m

   for j=1:n

     a=exp(-((i-m/2)^2+(j-n/2)^2)/(2*100)); %d=10

      subJ(i,j)=subJ(i,j)*a;

   end

end

resJ=uint8(real(ifft2(subJ)));%频率域到空间域

imshow(resJ,[]);

 

 

 

 

 

 

 

 

 

 

 

高斯高通滤波器(GHPF):

代码:

I=imread('cameraman.tif');

J1=imnoise(I,'salt & pepper',0.1);

f=double(J1);

subJ=fftshift(fft2(f));%空间域到频率域

[m,n]=size(subJ);

for i=1:m

   for j=1:n

     a=1-exp(-((i-m/2)^2+(j-n/2)^2)/(2*100)); %d=10

     subJ(i,j)=subJ(i,j)*a;

   end

end

resJ=uint8(real(ifft2(subJ)));%频率域到空间域

imshow(resJ,[]);

      

 

提取红色区域:

I=imread('greens.jpg');

subplot(1,2,1);

imshow(I);

title('原始图像');

[m,n,l]=size(I);

b=double(I)./255;

 r=0.1765;

a=[0.6863,0.1608,0.1922];

for i=1:m

   for j=1:n

      dis=(b(i,j,1)-a(1))^2+(b(i,j,2)-a(2))^2+(b(i,j,3)-a(3))^2;

         if(dis>r^2)

              I(i,j,1)=127;

              I(i,j,2)=127;

              I(i,j,3)=127;

         end

   end

end

subplot(1,2,2);

imshow(I,[]);

title('提取后');