关于数学建模

时间:2022-07-02 06:38:34

一.数学模型的定义

现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。不过我们可以给出如下定义。"数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。"具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构表达式。

二.建立数学模型的方法和步骤

第一、 模型准备

首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。

第二、 模型假设

根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。

第三、 模型构成

根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。

第四、模型求解

可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。

第五、模型分析

对模型解答进行数学上的分析。“横看成岭侧成峰,远近高低各不同”。能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论那种情况都需进行误差分析,数据稳定性分析

 

三: 数据模型分类

按模型的应用领域分类:

生物数学模型

医学数学模型

地质数学模型

数量经济学模型

数学社会学模型

按是否考虑随机因素分类:

确定性模型

随机性模型

按是否考虑模型的变化分类:

静态模型

动态模型

按应用离散方法或连续方法分类:

离散模型

连续模型

按建立模型的数学方法分类:

几何模型

微分方程模型

图论模型

规划论模型

马氏链模型

 

按人们对是物发展过程的了解程度分类:

白箱模型:

指那些内部规律比较清楚的模型。如力学、热学、电学以及相关的工程技术问题。

 

灰箱模型:

指那些内部规律尚不十分清楚,在建立和改善模型方面都还不同程度地有许多工作要做的问题。如气象学、生态学经济学等领域的模型。

 

黑箱模型:

指一些其内部规律还很少为人们所知的现象。如生命科学、社会科学等方面的问题。但由于因素众多、关系复杂,也可简化为灰箱模型来研究。

 

摘自数学建模爱好者