Ubuntu14.04环境下安装caffe以及python3,5版本的pycaffe

时间:2022-04-20 06:32:16

系统:Ubuntu 14.04 (64 bits)

显卡:A卡和Intel集显

Ubuntu系统自带的python使用的是2.7版本,但是要想使用最新版本的python3.5,则需要根据官方的安装文档做出一些改变。

首先根据如果只需要安装C++版本的Caffe,只需要按照如下步骤即可:

1) 下载caffe的源代码

# sudo git clone https://github.com/BVLC/caffe.git
2)安装一些依赖库

# sudo apt-get install libatlas-base-dev
# sudo apt-get install libprotobuf-dev
# sudo apt-get install libleveldb-dev
# sudo apt-get install libsnappy-dev
# sudo apt-get install libopencv-dev
# sudo apt-get install libboost-all-dev
# sudo apt-get install libhdf5-serial-dev
# sudo apt-get install libgflags-dev
# sudo apt-get install libgoogle-glog-dev
# sudo apt-get install liblmdb-dev
# sudo apt-get install protobuf-compile

3) 编译caffe
# cd ~/caffe-master
# sudo cp Makefile.config.example Makefile.config
# make all

4) pycaffe 配置

在caffe子目录/python下有一个文件requirements.txt

Cython>=0.19.2
numpy>=1.7.1
scipy>=0.13.2
scikit-image>=0.9.3
matplotlib>=1.3.1
ipython>=3.0.0
h5py>=2.2.0
leveldb>=0.191
networkx>=1.8.1
nose>=1.3.0
pandas>=0.12.0
python-dateutil>=1.4,<2
protobuf>=2.5.0
python-gflags>=2.0
pyyaml>=3.10
Pillow>=2.3.0
six>=1.1.0

如果安装python2.7 ,只需要安装以上的的软件. 但是如果需要安装python3.5版本的,需要提高其中几个版本.

但是在尝试安装以上所有软件的时候,会出现很多的依赖,所有我选择是anaconda3,它内部集成了很多的库,

只需要conda install 安装需要补充的库文件即可。

首先opencv 需要更新到opencv3.

protobuf需要更新到3.0版本,需要自己直接去github直接下载,但是首先需要先下载最新版本的protoc,然后用它来编译

protobuf3.0

配置文件bashrc

# sudo vi ~/.bashrc

在最后面加入

export PYTHONPATH=/home/xxx/caffe/python:$PYTHONPATH
然后更新
# sudo ldconfig

然后修改编译配置文件Makefile.config. 我的配置是:


## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome!

# cuDNN acceleration switch (uncomment to build with cuDNN).
# USE_CUDNN := 1

# CPU-only switch (uncomment to build without GPU support).
CPU_ONLY := 1

# uncomment to disable IO dependencies and corresponding data layers
# USE_OPENCV := 0
# USE_LEVELDB := 0
# USE_LMDB := 0

# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
#    You should not set this flag if you will be reading LMDBs with any
#    possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1

# Uncomment if you're using OpenCV 3
OPENCV_VERSION := 3

# To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++

# CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr

# CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
        -gencode arch=compute_20,code=sm_21 \
        -gencode arch=compute_30,code=sm_30 \
        -gencode arch=compute_35,code=sm_35 \
        -gencode arch=compute_50,code=sm_50 \
        -gencode arch=compute_50,code=compute_50

# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := atlas
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
# BLAS_INCLUDE := /path/to/your/blas
# BLAS_LIB := /path/to/your/blas

# Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib

# This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app

# NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
# PYTHON_INCLUDE := /usr/include/python2.7 \
        /usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
ANACONDA_HOME := $(HOME)/anaconda3
#PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
#        $(ANACONDA_HOME)/include/python2.7 \
#        $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include \

# Uncomment to use Python 3 (default is Python 2)
PYTHON_LIBRARIES := boost_python3 python3.5m
PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
                  $(ANACONDA_HOME)/include/python3.5m \
                  $(ANACONDA_HOME)/lib/python3.5/dist-packages/numpy/core/include

# We need to be able to find libpythonX.X.so or .dylib.
# PYTHON_LIB := /usr/lib
PYTHON_LIB := $(ANACONDA_HOME)/lib

# Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib

# Uncomment to support layers written in Python (will link against Python libs)
# WITH_PYTHON_LAYER := 1

# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib

# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib

# Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := 1

# N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute

# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1

# The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := 0

# enable pretty build (comment to see full commands)
Q ?= @

修改完编译配置文件后,最后进行编译:

# sudo make pycaffe