Embedding层

时间:2023-02-03 06:18:59

示例解释:

model = Sequential()

model.add(Embedding(1000, 64, input_length=10))  #输入中的数值最大值是1000,输出的第三维度是64,输入的长度是10.
keras.layers.Embedding(input_dim, output_dim, embeddings_initializer='uniform', embeddings_regularizer=None, activity_regularizer=None, embeddings_constraint=None, mask_zero=False, input_length=None)

 示例代码:

from keras.models import Sequential
from keras.layers import Embedding
model = Sequential()
model.add(Embedding(1000, 64, input_length=10)) #Embedding(vocab_size,output_dim,max_length)
# 模型将输入一个大小为 (batch, input_length) 的整数矩阵。
# 输入中最大的整数(即词索引)不应该大于 999 (词汇表大小)
# 现在 model.output_shape == (None, 10, 64),其中 None 是 batch 的维度。 input_array = np.random.randint(1000, size=(32, 10)) # 1000表示最大数值 model.compile('rmsprop', 'mse')
output_array = model.predict(input_array)
assert output_array.shape == (32, 10, 64)
#输入尺寸input_array.shape (32, 10)

#尺寸为 (batch_size, sequence_length) 的 2D 张量。

#输出尺寸  output_array.shape (32, 10, 64)

#尺寸为 (batch_size, sequence_length, output_dim) 的 3D 张量。

参考文献:

1. https://machinelearningmastery.com/use-word-embedding-layers-deep-learning-keras/

2. https://kexue.fm/archives/4122