Spark组件之SparkSQL学习1之问题报错No TypeTag available for Person

时间:2021-07-23 06:17:40
/**
* @author xubo
* spark 1.5.2
*
* reference :http://spark.apache.org/docs/1.5.2/sql-programming-guide.html
*/


更多代码请见:https://github.com/xubo245/SparkLearning


运行Inferring the Schema Using Reflection时报错:

代码:

// sc is an existing SparkContext.
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
// this is used to implicitly convert an RDD to a DataFrame.
import sqlContext.implicits._

// Define the schema using a case class.
// Note: Case classes in Scala 2.10 can support only up to 22 fields. To work around this limit,
// you can use custom classes that implement the Product interface.
case class Person(name: String, age: Int)

// Create an RDD of Person objects and register it as a table.
val people = sc.textFile("examples/src/main/resources/people.txt").map(_.split(",")).map(p => Person(p(0), p(1).trim.toInt)).toDF()
people.registerTempTable("people")

// SQL statements can be run by using the sql methods provided by sqlContext.
val teenagers = sqlContext.sql("SELECT name, age FROM people WHERE age >= 13 AND age <= 19")

// The results of SQL queries are DataFrames and support all the normal RDD operations.
// The columns of a row in the result can be accessed by field index:
teenagers.map(t => "Name: " + t(0)).collect().foreach(println)

// or by field name:
teenagers.map(t => "Name: " + t.getAs[String]("name")).collect().foreach(println)

// row.getValuesMap[T] retrieves multiple columns at once into a Map[String, T]
teenagers.map(_.getValuesMap[Any](List("name", "age"))).collect().foreach(println)
// Map("name" -> "Justin", "age" -> 19)

在spark-shell可以,用eclipse本地运行报错:

No TypeTag available for Person


解决方法:

将case class 放到main方法前


代码:

/**
* @author xubo
* spark 1.5.2
*
* reference :http://spark.apache.org/docs/1.5.2/sql-programming-guide.html
*/
package com.apache.spark.sql.test

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext
import org.apache.spark.rdd.RDD

object SparkSQLExamplesFromText0 {
case class Person(name: String, age: Int)
def main(args: Array[String]) {

val conf = new SparkConf().setAppName("SQLOnSpark").setMaster("local")
val sc = new SparkContext(conf)

val sqlContext = new org.apache.spark.sql.SQLContext(sc)
// this is used to implicitly convert an RDD to a DataFrame.
import sqlContext.implicits._

// Define the schema using a case class.
// Note: Case classes in Scala 2.10 can support only up to 22 fields. To work around this limit,
// you can use custom classes that implement the Product interface.

// Create an RDD of Person objects and register it as a table.
val people = sc.textFile("hdfs://<strong>Master</strong>:9000/xubo/spark/examples/src/main/resources/people.txt").map(_.split(",")).map(p => Person(p(0), p(1).trim.toInt)).toDF()
people.registerTempTable("people")

// SQL statements can be run by using the sql methods provided by sqlContext.
val teenagers = sqlContext.sql("SELECT name, age FROM people WHERE age >= 13 AND age <= 19")

// The results of SQL queries are DataFrames and support all the normal RDD operations.
// The columns of a row in the result can be accessed by field index:
teenagers.map(t => "Name: " + t(0)).collect().foreach(println)

// or by field name:
teenagers.map(t => "Name: " + t.getAs[String]("name")).collect().foreach(println)

// row.getValuesMap[T] retrieves multiple columns at once into a Map[String, T]
teenagers.map(_.getValuesMap[Any](List("name", "age"))).collect().foreach(println)
// Map("name" -> "Justin", "age" -> 19)

}

}

<strong>Master需要换成自己的ip</strong>