原文地址 http://www.cnblogs.com/helloever/p/5280891.html
最近一直把以前放下的NLP收拾起来,刚准备做关系抽取,然后把词变成向量的时候看到了Word2Vec这个神器,然后就开始了折腾之路
1.java版的
目前Word2Vec有很多版本,这次主要实验的是python版本,但开始为了省心(就在当前项目内)就先用java版的试试,java版的是ansj的作者孙健搞的,如果我没记错的话,ansj现在已经停止维护了。但搞出来这个新玩意儿,还是试试,倒是很简单,导入项目,学习,然后用,but没有语料,很多效果都没有。
地址:https://github.com/NLPchina/Word2VEC_java,不知道什么原因,在语料规模上来后(1G的中文语料,也不大啊),java版本的内存会在4.17G的时候挂掉,我怕不够直接给了10G。所以java版本的学习部分在大规模语料上没跑通,回头再试试。
2.Python版
苦于没有大规模语料,所以就又开始了寻觅之路,国家语委,各种分词工具内部的语料库,搜狗语料库,北大中文语料库等等,不是下载不来,就是语料太旧,峰回路转,逛52nlp的时候,找到了52NLP的一个说明,看到了竟然有中文wiki这么高质量的语料,赶紧下手搞到。<实验过程参考:http://www.52nlp.cn/中英文*语料上的word2vec实验>
实验环境:macbook pro i5 16g 256ssd ,python2.7,jdk1.8
实验步骤:
1. 下载语料,直接中文,目前需要
https://dumps.wikimedia.org/zhwiki/latest/zhwiki-latest-pages-articles.xml.bz2
2. 解析wiki
process_wiki.py
1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3
4 import logging
5 import os.path
6 import sys
7
8 from gensim.corpora import WikiCorpus
9
10 if __name__ == '__main__':
11 program = os.path.basename(sys.argv[0])
12 logger = logging.getLogger(program)
13
14 logging.basicConfig(format='%(asctime)s: %(levelname)s: %(message)s')
15 logging.root.setLevel(level=logging.INFO)
16 logger.info("running %s" % ' '.join(sys.argv))
17
18 # check and process input arguments
19 if len(sys.argv) < 3:
20 print globals()['__doc__'] % locals()
21 sys.exit(1)
22 inp, outp = sys.argv[1:3]
23 space = " "
24 i = 0
25
26 output = open(outp, 'w')
27 wiki = WikiCorpus(inp, lemmatize=False, dictionary={})
28 for text in wiki.get_texts():
29 output.write(space.join(text) + "\n")
30 i = i + 1
31 if (i % 10000 == 0):
32 logger.info("Saved " + str(i) + " articles")
33
34 output.close()
35 logger.info("Finished Saved " + str(i) + " articles")
将这两个文件放在同一个目录下,执行:python process_wiki.py zhwiki-latest-pages-articles.xml.bz2 wiki.zh.text:执行结果类似(当时没有截图,借用下):
2015-03-11 17:39:22,739: INFO: running process_wiki.py zhwiki-latest-pages-articles.xml.bz2 wiki.zh.text
2015-03-11 17:40:08,329: INFO: Saved 10000 articles
2015-03-11 17:40:45,501: INFO: Saved 20000 articles
2015-03-11 17:41:23,659: INFO: Saved 30000 articles
2015-03-11 17:42:01,748: INFO: Saved 40000 articles
2015-03-11 17:42:33,779: INFO: Saved 50000 articles
......
2015-03-11 17:55:23,094: INFO: Saved 200000 articles
2015-03-11 17:56:14,692: INFO: Saved 210000 articles
2015-03-11 17:57:04,614: INFO: Saved 220000 articles
2015-03-11 17:57:57,979: INFO: Saved 230000 articles
2015-03-11 17:58:16,621: INFO: finished iterating over Wikipedia corpus of 232894 documents with 51603419 positions (total 2581444 articles, 62177405 positions before pruning articles shorter than 50 words)
2015-03-11 17:58:16,622: INFO: Finished Saved 232894 articles
解析完毕后,需要(1)繁简转化(2)统一为UTF-8编码(3)分词
由于这几项手上直接有东西搞定,所以就没有采用52nlp的产品,反正只要能达到这个目的就可以了
然后需要:train_word2vec_model.py
1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3
4 import logging
5 import os.path
6 import sys
7 import multiprocessing
8
9 from gensim.corpora import WikiCorpus
10 from gensim.models import Word2Vec
11 from gensim.models.word2vec import LineSentence
12
13 if __name__ == '__main__':
14 program = os.path.basename(sys.argv[0])
15 logger = logging.getLogger(program)
16
17 logging.basicConfig(format='%(asctime)s: %(levelname)s: %(message)s')
18 logging.root.setLevel(level=logging.INFO)
19 logger.info("running %s" % ' '.join(sys.argv))
20
21 # check and process input arguments
22 if len(sys.argv) < 4:
23 print globals()['__doc__'] % locals()
24 sys.exit(1)
25 inp, outp1, outp2 = sys.argv[1:4]
26
27 model = Word2Vec(LineSentence(inp), size=400, window=5, min_count=5,
28 workers=multiprocessing.cpu_count())
29
30 # trim unneeded model memory = use(much) less RAM
31 #model.init_sims(replace=True)
32 model.save(outp1)
33 model.save_word2vec_format(outp2, binary=False)
执行:python train_word2vec_model.py wiki.zh.text wiki.zh.text.model wiki.zh.text.vector
同上,执行结果
2015-03-11 18:50:02,586: INFO: running train_word2vec_model.py wiki.zh.text.jian.seg.utf-8 wiki.zh.text.model wiki.zh.text.vector
2015-03-11 18:50:02,592: INFO: collecting all words and their counts
2015-03-11 18:50:02,592: INFO: PROGRESS: at sentence #0, processed 0 words and 0 word types
2015-03-11 18:50:12,476: INFO: PROGRESS: at sentence #10000, processed 12914562 words and 254662 word types
2015-03-11 18:50:20,215: INFO: PROGRESS: at sentence #20000, processed 22308801 words and 373573 word types
2015-03-11 18:50:28,448: INFO: PROGRESS: at sentence #30000, processed 30724902 words and 460837 word types
...
2015-03-11 18:52:03,498: INFO: PROGRESS: at sentence #210000, processed 143804601 words and 1483608 word types
2015-03-11 18:52:07,772: INFO: PROGRESS: at sentence #220000, processed 149352283 words and 1521199 word types
2015-03-11 18:52:11,639: INFO: PROGRESS: at sentence #230000, processed 154741839 words and 1563584 word types
2015-03-11 18:52:12,746: INFO: collected 1575172 word types from a corpus of 156430908 words and 232894 sentences
2015-03-11 18:52:13,672: INFO: total 278291 word types after removing those with count<5
2015-03-11 18:52:13,673: INFO: constructing a huffman tree from 278291 words
2015-03-11 18:52:29,323: INFO: built huffman tree with maximum node depth 25
2015-03-11 18:52:29,683: INFO: resetting layer weights
2015-03-11 18:52:38,805: INFO: training model with 4 workers on 278291 vocabulary and 400 features, using 'skipgram'=1 'hierarchical softmax'=1 'subsample'=0 and 'negative sampling'=0
2015-03-11 18:52:49,504: INFO: PROGRESS: at 0.10% words, alpha 0.02500, 15008 words/s
2015-03-11 18:52:51,935: INFO: PROGRESS: at 0.38% words, alpha 0.02500, 44434 words/s
2015-03-11 18:52:54,779: INFO: PROGRESS: at 0.56% words, alpha 0.02500, 53965 words/s
2015-03-11 18:52:57,240: INFO: PROGRESS: at 0.62% words, alpha 0.02491, 52116 words/s
2015-03-11 18:52:58,823: INFO: PROGRESS: at 0.72% words, alpha 0.02494, 55804 words/s
2015-03-11 18:53:03,649: INFO: PROGRESS: at 0.94% words, alpha 0.02486, 58277 words/s
2015-03-11 18:53:07,357: INFO: PROGRESS: at 1.03% words, alpha 0.02479, 56036 words/s
......
2015-03-11 19:22:09,002: INFO: PROGRESS: at 98.38% words, alpha 0.00044, 85936 words/s
2015-03-11 19:22:10,321: INFO: PROGRESS: at 98.50% words, alpha 0.00044, 85971 words/s
2015-03-11 19:22:11,934: INFO: PROGRESS: at 98.55% words, alpha 0.00039, 85940 words/s
2015-03-11 19:22:13,384: INFO: PROGRESS: at 98.65% words, alpha 0.00036, 85960 words/s
2015-03-11 19:22:13,883: INFO: training on 152625573 words took 1775.1s, 85982 words/s
2015-03-11 19:22:13,883: INFO: saving Word2Vec object under wiki.zh.text.model, separately None
2015-03-11 19:22:13,884: INFO: not storing attribute syn0norm
2015-03-11 19:22:13,884: INFO: storing numpy array 'syn0' to wiki.zh.text.model.syn0.npy
2015-03-11 19:22:20,797: INFO: storing numpy array 'syn1' to wiki.zh.text.model.syn1.npy
2015-03-11 19:22:40,667: INFO: storing 278291x400 projection weights into wiki.zh.text.vector
跑完之后就可以在python里使用model了
基本用法:
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647 | import gensim model = gensim.models.Word2Vec.load( "wiki.zh.text.model" ) >>> = model.most_similar(u "美女" ) >>> for e in result: ... print e[ 0 ],e[ 1 ] ... 帅哥 0.629959464073 正妹 0.607636809349 校花 0.566570997238 美腿 0.560691952705 女明星 0.556897878647 性感 0.548311054707 谐星 0.537560880184 大变身 0.52529746294 女丑 0.517377853394 辣妹 0.506102442741 >>> = model.most_similar(positive = [u '中国' ,u '日本' ], negative = [u '东京' ]) >>> for e in result: ... print e[ 0 ],e[ 1 ] ... 我国 0.525859713554 中国* 0.455589711666 朝鲜*主义人民* 0.433199852705 中华民国 0.430634796619 全中国 0.429285645485 美国 0.425486922264 * 0.422223210335 台商 0.420866370201 英国 0.420089453459 ** 0.41133800149 >>> = model.most_similar(positive = [u '女人' ,u '国王' ], negative = [u '男人' ]) >>> for e in result: ... print e[ 0 ],e[ 1 ] ... 王储 0.538514256477 王室 0.533518970013 四世 0.531962811947 一世 0.531662106514 王后 0.528761506081 王位 0.517430365086 君主 0.513949334621 摄政王 0.50737452507 二世 0.503388166428 六世 0.503049015999 |
>>> model[u'帅哥']
array([ -5.31498909e-01, -1.10617805e+00, 1.02419519e+00,
-3.50866057e-02, 5.56856513e-01, 6.14050031e-01,
1.03647232e-01, 6.10242724e-01, 2.12321617e-02,
-5.38967609e-01, -7.74732232e-01, 2.75299311e-01,
-4.18679267e-01, 2.29567051e-01, 2.23700061e-01,
-5.36157131e-01, 6.64938211e-01, -4.05853897e-01,
5.77953935e-01, -4.21773642e-01, -8.07677925e-01,
-1.39366493e-01, -2.69933283e-01, 5.06161451e-01,
4.67247456e-01, 1.66101696e-03, 7.38345563e-01,
-6.92869484e-01, 3.19320440e-01, 9.45071697e-01,
-2.35498585e-02, -5.21626115e-01, 1.13025808e+00,
-1.67293274e+00, -2.24904671e-01, -8.13860118e-01,
-4.53192621e-01, -2.13154644e-01, 4.65950929e-02,
1.29193068e-01, -6.40475228e-02, -1.21741116e+00,
1.86280087e-01, 8.68674144e-02, -1.09420717e+00,
8.19482096e-03, -7.45698586e-02, -1.16133177e+00,
7.06594527e-01, 7.71784961e-01, -7.01051205e-02,
6.90828502e-01, -1.52761474e-01, -5.61881602e-01,
...................................................
2.23608285e-01, -8.73272657e-01, 7.49607459e-02,
1.51212966e+00, -7.33180463e-01, -6.13278568e-01,
1.78863153e-01, 1.22361040e+00, -1.30831683e+00,
-3.13518018e-01], dtype=float32)
更详细用法参考:
https://radimrehurek.com/gensim/models/word2vec.html
http://rare-technologies.com/word2vec-tutorial/
感谢52nlp