Socket的综合应用总结

时间:2022-11-28 06:16:19

Socket 的传输的内容大概分3种:

  1. 封装的结构体:结构体(结构清晰,发送数据占用内存小),例如

    struct SOCKETDATA

    {

    DWORD password;        //每个客户端都有一个密码,为了防止外挂

    DWORD messageId;        //发送内容的ID标识,每种ID对应着消息的一种操作

    DWORD nowParkId;        //连续的ID号,防止丢包,和重复的发同样的包的操作

    Char* buffer;            //内容

    }此处也是对内容的简单的描述,真正的结构体可能更加复杂

  2. char*(显而易见的,支持指令),例如

    发送的字符串为"23,张三,10000",这样的内容的弊病在于很容易别解析,安全性低

  3. 超文本(支持脚本,类似xml,内存使用增加).可以结合1来综合运用,思路是很好的。

收发机制:封包,粘包。Send SendList, recv RecvList

向服务器一直发送数据的话,发送的内容不平均,有时内容较大,有时内容较小,一直连接对链路的负载也较大,所以我们在固定的时间间隔下发送数据,把要发送的数据存在一个链表中,集体发送,这样大大提高性能,发送的时间间隔根据游戏的情况而定,魔兽争霸为100ms,魔兽世界为200ms。

线程管理:

1、确保主线程不死

2、一段时间间隔看子线程是否死亡

3、Socket类封装:

ServerSocket

ClientSocket

NetCom    (消息底层,可用socket或是DirectPlay等等)

NetMessage(消息宏和结构体)

NetManager(消息处理)

4、Socket安全

5、Socket其他功能:连包,粘包

时间问题:加时间戳,逻辑不通过时间判断

总结 Socket服务器端的设计:

服务器还是利用Socket的完成端口来实现,首先创建服务器的Socket。

然后创建Accept线程,当有客户端accept时,加入到客户端列表中,然后异步调用WSARecv。

根据cpu个数创建接受数据的线程,接收的数据存储到链表中。

处理接受到的数据时用一个单独的线程遍历其中的内容,用信号量控制。

#define MAXMESSAGESIZE 1024

enum SOCKETOPERATE
{
soRECV
}; struct SOCKETDATA
{
WSAOVERLAPPED overlap; //重叠结构,用于异步请求的IO控制
WSABUF Buffer; //缓存,用于异步请求数据的保存
char sMessage[MAXMESSAGESIZE]; //真正的缓存
DWORD dwBytes; //异步请求发生时,产生的字节流量
DWORD Flages;
SOCKETOPERATE OperationType; //异步请求的操作类型 void Clear(SOCKETOPERATE SO)
{
ZeroMemory(this, sizeof(SOCKETDATA));
Buffer.len = MAXMESSAGESIZE;
Buffer.buf = sMessage;
OperationType = SO;
}
}; struct CClientPeer
{ SOCKET ClientSocket;
DWORD ID;
DWORD PassWord;
DWORD NowPackID;
DWORD dwIP;
u_short Port;
CEasyList *gClientRecv;
void InitList()
{
gClientRecv = new CEasyList;
}
}; class CServerSocket
{
public:
CServerSocket(void);
~CServerSocket(void);
bool Create(u_short Port);
int SendBuffer(int ClientID, void* Buffer, int Size);
int BroadCastBuff(void* Buffer, int Size); //广播 public:
SOCKET mSocket;
CEasyList mClients;
HANDLE mCP;
u_short mPort;
}; SOCKET CreateServerSocket(int Port);
DWORD WINAPI SocketProcMain(LPVOID lpParam); //Socket主线程函数,负责处理IO请求
DWORD WINAPI SocketProcAccept(LPVOID lpParam); //Socket线程函数,负责处理线程链接 CServerSocket::CServerSocket(void)
{
WSADATA wsaData;
WSAStartup(0x0202,&wsaData);
mSocket=INVALID_SOCKET;
mCP = INVALID_HANDLE_VALUE;
} CServerSocket::~CServerSocket(void)
{
closesocket(mSocket);
WSACleanup();
} SOCKET CreateServerSocket(int Port)
{ int iErrCode;
WSADATA wsaData;
iErrCode = WSAStartup(0x0202, &wsaData);
int iRes;
SOCKET tempSocket = socket(AF_INET, SOCK_STREAM, );
SOCKADDR_IN addr;
addr.sin_family = AF_INET;
addr.sin_port = htons(Port);
addr.sin_addr.s_addr = inet_addr("127.0.0.1");
iRes = bind(tempSocket,(LPSOCKADDR)&addr,sizeof(addr));
if(iRes == SOCKET_ERROR)
{
closesocket(tempSocket);
return INVALID_SOCKET;
} iRes = listen(tempSocket, );
if(iRes == SOCKET_ERROR)
{
closesocket(tempSocket);
return INVALID_SOCKET;
}
return tempSocket;
} bool CServerSocket::Create( u_short Port )
{
mSocket = CreateServerSocket(Port);
if (mSocket == INVALID_SOCKET)
{
return false;
} mPort = Port;
mCP = CreateIoCompletionPort(INVALID_HANDLE_VALUE, NULL, , );
SYSTEM_INFO systemInfo;
GetSystemInfo(&systemInfo);
for (int i = ; i<systemInfo.dwNumberOfProcessors;i++)
{
CreateThread(NULL, NULL, SocketProcMain, this, NULL, NULL);
}
CreateThread(NULL, NULL, SocketProcAccept, this, NULL, NULL);
Sleep();
return true;
} DWORD WINAPI SocketProcMain(LPVOID lpParam)
{
HANDLE CP = ((CServerSocket*)lpParam)->mCP;
SOCKET serverSocket = ((CServerSocket*)lpParam)->mSocket;
DWORD dwBytes;
SOCKETDATA *lpSocketData = NULL;
while ()
{
//等待全局完成端口的玩曾队列
CClientPeer *pClient=NULL;
GetQueuedCompletionStatus(CP, &dwBytes, (PULONG_PTR)&pClient, (LPOVERLAPPED*)&lpSocketData, INFINITE);
if(dwBytes == 0xffffffff)
{
return ;
}
//当数据类型为soRECV时,
if(lpSocketData->OperationType == soRECV)
{
//当客端关闭连接时
if(dwBytes == )
{
closesocket(serverSocket);
HeapFree(GetProcessHeap(), , lpSocketData);
}
else
{
char* s = new char[dwBytes+];
strcpy(s, lpSocketData->sMessage);
pClient->gClientRecv->Add(s);
/*printf("Server:%d Client:%d \t:%s\n", ((CServerSocket*)lpParam)->mPort,
pClient->dwIP/0x1000000,
lpSocketData->sMessage);*/
//重置Socket数据为soRECV
lpSocketData->Clear(soRECV);
WSARecv(pClient->ClientSocket, &lpSocketData->Buffer, , &lpSocketData->dwBytes, &lpSocketData->Flages, &lpSocketData->overlap, NULL);
}
}
}
} DWORD WINAPI SocketProcAccept(LPVOID lpParam)
{
SOCKET tmp;
SOCKADDR_IN tempAddr;
int dwAddrSize = sizeof(tempAddr);
HANDLE CP = ((CServerSocket*)lpParam)->mCP;
SOCKET serverSocket = ((CServerSocket*)lpParam)->mSocket;
SOCKETDATA *lpSocketData;
while()
{
tmp = accept(serverSocket, (sockaddr*)&tempAddr, &dwAddrSize);
CClientPeer *pClient = NULL;
pClient = (CClientPeer*)HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(CClientPeer));
pClient->InitList();
pClient->ClientSocket = tmp;
pClient->dwIP = tempAddr.sin_addr.s_addr;
pClient->Port = tempAddr.sin_port;
((CServerSocket*)lpParam)->mClients.Add(pClient);
//创建客户端Socket和全局完成端口的链接
CreateIoCompletionPort((HANDLE)tmp, CP, (DWORD)pClient, );
//在主线程堆中开辟,Socket缓存数据
lpSocketData = (SOCKETDATA *)HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(SOCKETDATA));
//将此数据初始化为soRecv
lpSocketData->Clear(soRECV);
//异步调用WSARecv,其中第二个参数是I/O请求成功时,数据保存的地址。
WSARecv(tmp, &lpSocketData->Buffer, , &lpSocketData->dwBytes, &lpSocketData->Flages, &lpSocketData->overlap, NULL);
}
} class CNetManager
{
public:
CNetManager(void);
~CNetManager(void);
bool CreateServer(); private:
CServerSocket mServerSocket;
}; DWORD WINAPI RecvProc(LPVOID pParam); bool CNetManager::CreateServer()
{
mServerSocket.Create();
CreateThread(NULL, NULL, RecvProc, &mServerSocket, NULL, NULL);
return ;
} DWORD WINAPI RecvProc( LPVOID pParam )
{
if(pParam == NULL)
{
return ;
}
CServerSocket *pServer = (CServerSocket*)pParam;
CClientPeer *pClient;
while()
{
for (int i=; i<pServer->mClients.Count();i++)
{
pClient = (CClientPeer*)pServer->mClients.Get(i);
if (pClient)
{
for (int j=; j<pClient->gClientRecv->Count();j++)
{
char* s = (char*)pClient->gClientRecv->Get(j);
printf("%x \t (%d) %s \n",pClient->dwIP,j,s);
delete s;
}
pClient->gClientRecv->Clear();
}
}
}
}