题目大概说一棵n个结点的树,每个结点都可以安装某一规格的一个塔,塔有价格和能量两个属性。现在一个敌人从1点出发但不知道他会怎么走,如果他经过一个结点的塔那他就会被塔攻击失去塔能量的HP,如果HP小于等于0敌人就挂了。任务就是在总花费不超过m的条件下在各个结点安装塔,求能预防的敌人的HP的最大值。
状态容易表示,dp[u][m]表示在结点u为根的子树中花费m能预防的最大的HP
转移显然又是树上背包了,不过略麻烦,想清楚的话还是能比较快地写完:
- u子树从它孩子结点的子树的最小值中转移过来,因为各个孩子都必须选我用了一个临时数组存值转移完后更新回去
- 这样处理完u的各个子树,再用一遍背包加上u结点本身能建的塔,就是dp[u]状态的值了
WA了一发,因为同一价格不同能量没考虑到。。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define MAXN 1111
struct Edge{
int v,next;
}edge[MAXN<<];
int NE,head[MAXN];
void addEdge(int u,int v){
edge[NE].v=v; edge[NE].next=head[u];
head[u]=NE++;
}
int m,mat[MAXN][];
int d[MAXN][],tmp[];
void dp(int u,int fa){
d[u][]=;
bool first=;
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(v==fa) continue;
dp(v,u);
if(first){
first=;
for(int j=; j<=m; ++j) d[u][j]=d[v][j];
continue;
}
memset(tmp,-,sizeof(tmp));
for(int j=; j<=m; ++j){
for(int k=; j+k<=m; ++k){
tmp[j+k]=max(tmp[j+k],min(d[u][j],d[v][k]));
}
}
for(int j=; j<=m; ++j) d[u][j]=tmp[j];
}
for(int i=m; i>=; --i){
for(int j=; j<=i; ++j){
if(d[u][i-j]==- || mat[u][j]==-) continue;
d[u][i]=max(d[u][i],d[u][i-j]+mat[u][j]);
}
}
}
int main(){
int t,n,a,b,c;
scanf("%d",&t);
while(t--){
NE=;
memset(head,-,sizeof(head));
scanf("%d",&n);
for(int i=; i<n; ++i){
scanf("%d%d",&a,&b);
addEdge(a,b); addEdge(b,a);
}
memset(mat,-,sizeof(mat));
scanf("%d",&m);
for(int i=; i<=n; ++i){
scanf("%d",&a);
while(a--){
scanf("%d%d",&b,&c);
mat[i][b]=max(mat[i][b],c);
}
}
memset(d,-,sizeof(d));
dp(,);
int res=;
for(int i=; i<=m; ++i) res=max(res,d[][i]);
printf("%d\n",res);
}
return ;
}