一、参考OpenCV的CascadeClassifier类LBPEvaluator类
如下,筛选出存放分类器相关信息的成员变量:
class CV_EXPORTS_W CascadeClassifier
{
public:
CV_WRAP CascadeClassifier();
CV_WRAP CascadeClassifier( const string& filename );
virtual ~CascadeClassifier(); CV_WRAP virtual bool empty() const;
CV_WRAP bool load( const string& filename );
virtual bool read( const FileNode& node );
CV_WRAP virtual void detectMultiScale( const Mat& image,
CV_OUT vector<Rect>& objects,
double scaleFactor=1.1,
int minNeighbors=, int flags=,
Size minSize=Size(),
Size maxSize=Size() ); CV_WRAP virtual void detectMultiScale( const Mat& image,
CV_OUT vector<Rect>& objects,
vector<int>& rejectLevels,
vector<double>& levelWeights,
double scaleFactor=1.1,
int minNeighbors=, int flags=,
Size minSize=Size(),
Size maxSize=Size(),
bool outputRejectLevels=false ); bool isOldFormatCascade() const;
virtual Size getOriginalWindowSize() const;
int getFeatureType() const;
bool setImage( const Mat& ); protected:
//virtual bool detectSingleScale( const Mat& image, int stripCount, Size processingRectSize,
// int stripSize, int yStep, double factor, vector<Rect>& candidates ); virtual bool detectSingleScale( const Mat& image, int stripCount, Size processingRectSize,
int stripSize, int yStep, double factor, vector<Rect>& candidates,
vector<int>& rejectLevels, vector<double>& levelWeights, bool outputRejectLevels=false); protected:
enum { BOOST = };
enum { DO_CANNY_PRUNING = , SCALE_IMAGE = ,
FIND_BIGGEST_OBJECT = , DO_ROUGH_SEARCH = }; friend class CascadeClassifierInvoker; template<class FEval>
friend int predictOrdered( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight); template<class FEval>
friend int predictCategorical( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight); template<class FEval>
friend int predictOrderedStump( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight); template<class FEval>
friend int predictCategoricalStump( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight); bool setImage( Ptr<FeatureEvaluator>& feval, const Mat& image);
virtual int runAt( Ptr<FeatureEvaluator>& feval, Point pt, double& weight ); class Data
{
public:
struct CV_EXPORTS DTreeNode
{
int featureIdx;
float threshold; // for ordered features only
int left;
int right;
}; struct CV_EXPORTS DTree
{
int nodeCount;
}; struct CV_EXPORTS Stage
{
int first;
int ntrees;
float threshold;
}; bool read(const FileNode &node); bool isStumpBased; int stageType;
int featureType;
int ncategories;
Size origWinSize; vector<Stage> stages;
vector<DTree> classifiers;
vector<DTreeNode> nodes;
vector<float> leaves;
vector<int> subsets;
}; Data data;
Ptr<FeatureEvaluator> featureEvaluator;
Ptr<CvHaarClassifierCascade> oldCascade; public:
class CV_EXPORTS MaskGenerator
{
public:
virtual ~MaskGenerator() {}
virtual cv::Mat generateMask(const cv::Mat& src)=;
virtual void initializeMask(const cv::Mat& /*src*/) {};
};
void setMaskGenerator(Ptr<MaskGenerator> maskGenerator);
Ptr<MaskGenerator> getMaskGenerator(); void setFaceDetectionMaskGenerator(); protected:
Ptr<MaskGenerator> maskGenerator;
}; class LBPEvaluator : public FeatureEvaluator
{
public:
struct Feature
{
Feature();
Feature( int x, int y, int _block_w, int _block_h ) :
rect(x, y, _block_w, _block_h) {} int calc( int offset ) const;
void updatePtrs( const Mat& sum );
bool read(const FileNode& node ); Rect rect; // weight and height for block
const int* p[]; // fast
}; LBPEvaluator();
virtual ~LBPEvaluator(); virtual bool read( const FileNode& node );
virtual Ptr<FeatureEvaluator> clone() const;
virtual int getFeatureType() const { return FeatureEvaluator::LBP; } virtual bool setImage(const Mat& image, Size _origWinSize);
virtual bool setWindow(Point pt); int operator()(int featureIdx) const
{ return featuresPtr[featureIdx].calc(offset); }
virtual int calcCat(int featureIdx) const
{ return (*this)(featureIdx); }
protected:
Size origWinSize;
Ptr<vector<Feature> > features;
Feature* featuresPtr; // optimization
Mat sum0, sum;
Rect normrect; int offset;
};
二、开始设计适合自己分类器的数据结构
如下图,因为我们打算使用数组方式存储信息,为避免溢出,首先了解自己分类器的强分类器级数,nodes,leaves等信息,由于我们的分类器是通过opencv训练的,所以可以直接Debug查看分类器信息,或者通过xml文件查看。
设计结构体如下:
#ifndef _CP_ADABOOST_
#define _CP_ADABOOST_
#ifdef __cplusplus
extern "C"{
#endif
typedef struct tagCpSize
{
int iWidth;
int iHeight;
}CP_SIZE_S; typedef struct tagCPDTreeNode
{
int featureIdx;
float threshold; // for ordered features only
int left;
int right;
}CP_DTREE_NODE_S; typedef struct tagCpDTree
{
int nodeCount;
}CP_DTREE_S; typedef struct tagCpStage
{
int first;
int ntrees;
float threshold;
}CP_STAGE_S; typedef struct tagCPRect
{
int x;
int y;
int width;
int height;
}CP_RECT_S; typedef struct tagLBPFeature
{
CP_RECT_S rect;/*特征位置*/
int* p[];/* 特征在积分图中的地址 */
}CP_LBP_FEATURE_S; typedef struct tagCpClassifier
{
bool isStumpBased; int stageType;
int featureType;
int ncategories;
CP_SIZE_S origWinSize; CP_STAGE_S stages[]; /*强分类器级数*/
int stagerNum;
CP_DTREE_S classifiers[];
int classfierNum;
CP_DTREE_NODE_S nodes[];
int nodeNum;
CP_LBP_FEATURE_S feature[];
int featureNum;
float leaves[];
int leaveNum;
int subsets[];
int subsetNum;
}CP_CLASSIFIER_S; #ifdef __cplusplus
}
#endif
#endif /* _CP_ADABOOST_ */