/**
* Source : https://oj.leetcode.com/problems/unique-binary-search-trees/
*
*
* Given n, how many structurally unique BST's (binary search trees) that store values 1...n?
*
* For example,
* Given n = 3, there are a total of 5 unique BST's.
*
* 1 3 3 2 1
* \ / / / \ \
* 3 2 1 1 3 2
* / / \ \
* 2 1 2 3
*
*
*/
public class UniqueBinarySearchTree {
/**
* 求出给定n的所有唯一的二叉搜索树
* 二叉搜索树:
* 如果左子树不为空,则左子树的节点值要小于根节点的值,如果右节点不为空,则右子树节点的值大于根节点的值
*
* 找规律
* 设n的唯一二叉搜索树个数为f(n)
* n = 0, f(0) = 1
* n = 1, f(1) = 1
* n = 2, f(2) = 2
* n = 3, f(3) = 5
* .....
*
* 讨论n = 3的情况
* 当根节点为1,左子树必须为空,则总数取决于右子树的个数,f(0)*f(n-1)=f(0)*f(2)=2
* 当根节点为2,左子树为1,右子树为3,在总数为f(1)*(n-2)=f(1)*(1)=1
* 当根节点为3,左子树为空,可能有f(0)*f(2),左子树为1,可能有f(1)*f(1),左子树为2,可能有f(2)*f(0)=2,总共有2+1+2=5
*
* 所以:
* f(0) = 1
* f(n) = f(0)*f(n-1) + f(1)f(n-2) + f(2)*f(n-3) + ... + f(n-3)f(2) + f(n-2)*f(1) + f(n-1)f(0);
*
* 注意:因为要计算f(n),所以数组长度应该为n+1,因为要保存0-n之间的结果
*
*
* @param n
* @return
*/
public int uniqueTreeCount (int n) {
if (n == 0) {
return 1;
}
int[] dp = new int[n+1];
dp[0] = 1;
for (int i = 1; i <= n; i++) {
for (int j = 0; j < i; j++) {
dp[i] += dp[j] * dp[i-j-1];
}
}
return dp[n];
}
public static void main(String[] args) {
UniqueBinarySearchTree uniqueBinarySearchTree = new UniqueBinarySearchTree();
System.out.println(uniqueBinarySearchTree.uniqueTreeCount(0));
System.out.println(uniqueBinarySearchTree.uniqueTreeCount(1));
System.out.println(uniqueBinarySearchTree.uniqueTreeCount(2));
System.out.println(uniqueBinarySearchTree.uniqueTreeCount(3));
}
}