R语言 实现矩阵相乘100次

时间:2022-06-01 21:08:11

【D1 D2】2*1

【T1 T2】1*2

要求D1和D2随机的变动, 矩阵相乘100次

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
rm(list=ls())
gc()
options(scipen = 2000)
##################写成函数###########3
#################定义TT矩阵(1*2)
TT <- matrix(c(1,3),1,2)
DD<- matrix(c(1,2),2,1)
result1 <- DD %*% TT
m1=result1
######################设定随机取的整数范围
x <- 1:100
m=data.frame()
#################变换DD矩阵(2*1)##############
for (i in 2:100){
 D2<- matrix(c(sample(x,1,replace=TRUE),sample(x,1,replace=TRUE)),2,1)
 # print(D2)
 result <- D2%*% TT
 print(result)
 m <- rbind(m,result)
 result1 <- result %*% result1
}
(finally_result <- result1)
(m_all <- rbind(m,m1))

补充:R语言之矩阵操作和运算

1.转置运算

对于矩阵A,函数t(A)表示矩阵A的转置,如:

?
1
2
3
4
5
6
7
8
9
10
> A=matrix(1:6,nrow=2);
> A;
  [,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
> t(A);
  [,1] [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6

2.求方阵的行列式

函数det()是求矩阵行列式的值,如

?
1
2
> det(matrix(1:4,ncol=2));
[1] -2

3.向量的内积

对于n维向量x,可以看成nxl阶矩阵或lxn阶矩阵。若x与y是相同

维数的向量,则x%*%Y表示x与y作内积.例如,

?
1
2
3
4
>x=1:5; Y=2*1:5
>x%*%y
  [,1]
[1,]110

函数crossprod()是内积运算函数(表示交叉乘积),crossprod(x,y)计算向量x与y的内积,即t(x) %*% y'。crossprod(x)表示x与x的内积.

类似地,tcrossprod(x,y)表示'x%*%t(Y)',即x与y的外积,也称为叉积。tcrossprod(x)表示x与x作外积.如:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
> x=1:5; y=2*1:5;
> crossprod(x);
  [,1]
[1,] 55
> crossprod(x,y);
  [,1]
[1,] 110
> tcrossprod(x);
  [,1] [,2] [,3] [,4] [,5]
[1,] 1 2 3 4 5
[2,] 2 4 6 8 10
[3,] 3 6 9 12 15
[4,] 4 8 12 16 20
[5,] 5 10 15 20 25
> tcrossprod(x,y);
  [,1] [,2] [,3] [,4] [,5]
[1,] 2 4 6 8 10
[2,] 4 8 12 16 20
[3,] 6 12 18 24 30
[4,] 8 16 24 32 40
[5,] 10 20 30 40 50

4.向量的外积(叉积)

设x和y是n维向量,则x%o%y表示x与y作外积.例如

?
1
2
3
4
5
6
7
> x%o%y;
  [,1] [,2] [,3] [,4] [,5]
[1,] 2 4 6 8 10
[2,] 4 8 12 16 20
[3,] 6 12 18 24 30
[4,] 8 16 24 32 40
[5,] 10 20 30 40 50

outer()是更为强大的外积运算函数,outer(x,y)计算向量二与y的外积,它等价于x %o%y函数。

outer()的一般调用格式为 outer(x,y,fun=”*”)

其中x, y矩阵(或向量),fun是作外积运算函数,缺省值为乘法运算。函数outer()在绘制三维曲面时非常有用,它可生成一个x和y的网格。

5.矩阵的乘法

设A和B为两个矩阵,通常意义下的矩阵乘法是通过A%*%B来完成,crossprod(A,B)表示的是

t(A)%*%B,而tcrossprod(A,B)表示的是A%*%t(B)。最后我们通过运算知道x%*%A%*%x为二次型。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
> A=array(1:9,dim=(c(3,3)))
> B=array(9:1,dim=(c(3,3)))
> A%*%B;
  [,1] [,2] [,3]
[1,] 90 54 18
[2,] 114 69 24
[3,] 138 84 30
> crossprod(A,B)==t(A)%*%B;
  [,1] [,2] [,3]
[1,] TRUE TRUE TRUE
[2,] TRUE TRUE TRUE
[3,] TRUE TRUE TRUE
> tcrossprod(A,B)==A%*%t(B);
  [,1] [,2] [,3]
[1,] TRUE TRUE TRUE
[2,] TRUE TRUE TRUE
[3,] TRUE TRUE TRUE

6.生成对角阵和矩阵取对角运算

函数diag()依赖于它的变量,当v是一个向量时,diag(v)表示以v的元素为对角线元素的对角阵.当M是一个矩阵时,则diag(M)表示的是取M对角线上的元素的向量.如

?
1
2
3
4
5
6
7
8
9
> v=c(1,4,5);
> diag(v);
  [,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 4 0
[3,] 0 0 5
> M=array(1:9,dim=c(3,3));
> diag(M);
[1] 1 5 9

7.解线性方程组和求矩阵的逆矩阵

若求解线性方程组Ax=b,其命令形式为solve(A,b),求矩阵A的逆,其命令形式为solve(A).设矩阵A=t(array(c(1:8,10),dim=c(3,3))),b<-c(1,1,1),则解方程组Ax=b的解x和求矩阵A的逆矩阵的命令如下:

?
1
2
3
4
5
6
7
8
9
10
> A=t(array(c(1:8,10),dim=c(3,3)));
> b=c(1,1,1);
> x=solve(A,b);
> x;
[1] -1.000000e+00 1.000000e+00 3.806634e-16
> solve(A);
   [,1]  [,2] [,3]
[1,] -0.6666667 -1.333333 1
[2,] -0.6666667 3.666667 -2
[3,] 1.0000000 -2.000000 1

8.求矩阵的特征值与特征向量

函数eigen(Sm)是求对称矩阵Sm的特征值与特征向量,其命令形式为:ev=eigen(Sm),则ev存放着对称矩阵Sm特征值和特征向量,是由列表形式给出的,其中ev$values是Sm的特征值构成的向量,ev$vectors是Sm的特征向量构成的矩阵.如

?
1
2
3
4
5
6
7
8
9
10
> Sm=crossprod(A,A);
> ev=eigen(Sm);
> ev;
$values
[1] 303.19533618 0.76590739 0.03875643
$vectors
   [,1]   [,2]  [,3]
[1,] -0.4646675 0.833286355 0.2995295
[2,] -0.5537546 -0.009499485 -0.8326258
[3,] -0.6909703 -0.552759994 0.4658502

以上为个人经验,希望能给大家一个参考,也希望大家多多支持服务器之家。如有错误或未考虑完全的地方,望不吝赐教。

原文链接:https://laidefa.blog.csdn.net/article/details/77247558