最短路之Floyd算法

时间:2022-05-30 06:00:15

1.介绍

  floyd算法只有五行代码,代码简单,三个for循环就可以解决问题,所以它的时间复杂度为O(n^3),可以求多源最短路问题。

2.思想:

  Floyd算法的基本思想如下:从任意节点A到任意节点B的最短路径不外乎2种可能,1是直接从A到B,2是从A经过若干个节点X到B。所以,我们假设Dis(AB)为节点A到节点B的最短路径的距离,对于每一个节点X,我们检查Dis(AX) + Dis(XB) < Dis(AB)是否成立,如果成立,证明从A到X再到B的路径比A直接到B的路径短,我们便设置Dis(AB) = Dis(AX) + Dis(XB),这样一来,当我们遍历完所有节点X,Dis(AB)中记录的便是A到B的最短路径的距离。

举个例子:已知下图,

最短路之Floyd算法

  如现在只允许经过1号顶点,求任意两点之间的最短路程,只需判断e[i][1]+e[1][j]是否比e[i][j]要小即可。e[i][j]表示的是从i号顶点到j号顶点之间的路程。e[i][1]+e[1][j]表示的是从i号顶点先到1号顶点,再从1号顶点到j号顶点的路程之和。其中i是1~n循环,j也是1~n循环,代码实现如下。

for(i=; i<=n; i++)
{
for(j=; j<=n; j++)
{
if ( e[i][j] > e[i][]+e[][j] )
e[i][j] = e[i][]+e[][j];
}
}

  接下来继续求在只允许经过1和2号两个顶点的情况下任意两点之间的最短路程。在只允许经过1号顶点时任意两点的最短路程的结果下,再判断如果经过2号顶点是否可以使得i号顶点到j号顶点之间的路程变得更短。即判断e[i][2]+e[2][j]是否比e[i][j]要小,代码实现为如下。

//经过1号顶点
for(i=; i<=n; i++)
for(j=; j<=n; j++)
if (e[i][j] > e[i][]+e[][j])
e[i][j]=e[i][]+e[][j];
//经过2号顶点
for(i=; i<=n; i++)
for(j=; j<=n; j++)
if (e[i][j] > e[i][]+e[][j])
e[i][j]=e[i][]+e[][j];

  最后允许通过所有顶点作为中转,代码如下:

for(k=; k<=n; k++)
for(i=; i<=n; i++)
for(j=; j<=n; j++)
if(e[i][j]>e[i][k]+e[k][j])
e[i][j]=e[i][k]+e[k][j];

这段代码的基本思想就是:最开始只允许经过1号顶点进行中转,接下来只允许经过1和2号顶点进行中转……允许经过1~n号所有顶点进行中转,求任意两点之间的最短路程。与上面相同

3.代码模板:

#include <stdio.h>
#define inf 0x3f3f3f3f
int map[][];
int main()
{
int k,i,j,n,m;
//读入n和m,n表示顶点个数,m表示边的条数
scanf("%d %d",&n,&m); //初始化
for(i=; i<=n; i++)
for(j=; j<=n; j++)
if(i==j)
map[i][j]=;
else
map[i][j]=inf;
int a,b,c;
//读入边
for(i=; i<=m; i++)
{
scanf("%d %d %d",&a,&b,&c);
map[a][b]=c;//这是一个有向图
} //Floyd-Warshall算法核心语句
for(k=; k<=n; k++)
for(i=; i<=n; i++)
for(j=; j<=n; j++)
if(map[i][j]>map[i][k]+map[k][j] )
map[i][j]=map[i][k]+map[k][j]; //输出最终的结果,最终二维数组中存的即使两点之间的最短距离
for(i=; i<=n; i++)
{
for(j=; j<=n; j++)
{
printf("%10d",map[i][j]);
}
printf("\n");
}
return ;
}