CodeForces 359D (数论+二分+ST算法)

时间:2021-09-19 05:53:41

题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=47319

题目大意:给定一个序列,要求确定一个子序列,①使得该子序列中所有值都能被其中一个值整除,②且子序列范围尽可能大(r-l尽可能大)。

解题思路

对于要求1,不难发现只有min(L,R)=gcd(L,R)时才行。其中gcd是L,R范围内的最大公约数,min是L,R范围内的最小值。

对于要求2,传统思路是r-l从大到小枚举,每次确定一个(L,R)范围,进行判断,直到可行。复杂度O(n^2)铁定TLE。

由于r-l的值是有序的,固采用二分。先枚举r-l的中间值,如果符合要求,则向右考虑,看看有没有更大的。否则向左。

当然这题的难度不止于此,尽管采用二分,但是光是枚举复杂度就有O(nlogn)了,再加上查询orz。

最初我使用的是线段树完成RMQ、以及GCD的Query , 复杂度O(n*logn*logn), CF跑到Test10就TLE了。

看了题解才发现要使用ST算法在O(1)的时间内完成RMQ和GCD。也是第一次碰到ST算法,看见刘汝佳的炒鸡简洁ST,给跪了。

#include "cstdio"
#include "iostream"
#include "vector"
#include "algorithm"
#include "math.h"
#include "cstring"
using namespace std;
#define lson l,mid,root<<1
#define rson mid+1,r,root<<1|1
#define maxn 3*100005
#define maxp 20
template <class T>
inline bool read(T &ret)
{
char c;
int sgn;
if(c=getchar(),c==EOF) return ; //EOF
while(c!='-'&&(c<''||c>'')) c=getchar();
sgn=(c=='-')?-:;
ret=(c=='-')?:(c-'');
while(c=getchar(),c>=''&&c<='') ret=ret*+(c-'');
ret*=sgn;
return ;
}
int gcd(int a,int b) {if(b!=) return gcd(b,a%b);else return a;}
int RMQ[maxn][maxp],GCD[maxn][maxp],val[maxn],n,cnt,range;
vector<int> ans;
void ST()
{
for(int i=;i<=n;i++) RMQ[i][]=GCD[i][]=val[i];
for(int j=;(<<j)<=n;j++)
for(int i=;i+(<<j)-<=n;i++)
{
RMQ[i][j]=min(RMQ[i][j-],RMQ[i+(<<(j-))][j-]);
GCD[i][j]=gcd(GCD[i][j-],GCD[i+(<<(j-))][j-]);
}
}
bool Query(int L,int R)
{
int k=;
while((<<(k+))<=R-L+) k++;
int a=min(RMQ[L][k],RMQ[R-(<<k)+][k]);
int b=gcd(GCD[L][k],GCD[R-(<<k)+][k]);
if(a==b) return true;
else return false;
}
bool judge(int v) //枚举r-l
{
int cc=;
vector<int> tt;
for(int i=; v+i<=n; i++)
{
if(Query(i,i+v)) //L=i,R=i+v;
{
cc++;
tt.push_back(i);
}
}
if(cc>)
{
ans=tt;
cnt=cc;
range=v;
return true;
}
return false;
}
int main()
{
memset(RMQ,,sizeof(RMQ));
memset(GCD,,sizeof(GCD));
read(n);
for(int i=; i<=n; i++)
read(val[i]);
ST();
int l=,r=n-,mid;
while(l<=r) //二分
{
mid=(l+r)>>;
if(judge(mid)) l=mid+;
else r=mid-;
}
printf("%d %d\n",cnt,range);
for(int i=;i<ans.size();i++) {if(i>) printf(" ");printf("%d",ans[i]);};
printf("\n");
}
2808371 neopenx CodeForces 359D Accepted 51924 KB 358 ms GNU C++ 4.6 1981 B 2014-10-03 15:00:32