1:concept learning:version space,decision tree等;
2:rule learning:If-then rules, association rules, genetic programming等;
3. instance-based learning(k-means, knn),clustering等;
4:numerical approaches: ANNs , SVM,computational learning等;
5: probabilistic approaches :bayesian learning等;
6:ensembling:bagging,boosting,stacking等,combining classifiers;
8: reinforcement learning。