[抄题]:
You are given an array A
of strings.
Two strings S
and T
are special-equivalent if after any number of moves, S == T.
A move consists of choosing two indices i
and j
with i % 2 == j % 2
, and swapping S[i]
with S[j]
.
Now, a group of special-equivalent strings from A
is a non-empty subset S of A
such that any string not in S is not special-equivalent with any string in S.
Return the number of groups of special-equivalent strings from A
.
Example 1:
Input: ["a","b","c","a","c","c"]
Output: 3
Explanation: 3 groups ["a","a"], ["b"], ["c","c","c"]
Example 2:
Input: ["aa","bb","ab","ba"]
Output: 4
Explanation: 4 groups ["aa"], ["bb"], ["ab"], ["ba"]
Example 3:
Input: ["abc","acb","bac","bca","cab","cba"]
Output: 3
Explanation: 3 groups ["abc","cba"], ["acb","bca"], ["bac","cab"]
Example 4:
Input: ["abcd","cdab","adcb","cbad"]
Output: 1
Explanation: 1 group ["abcd","cdab","adcb","cbad"]
[暴力解法]:
时间分析:
空间分析:
[优化后]:
时间分析:
空间分析:
[奇葩输出条件]:
[奇葩corner case]:
[思维问题]:
[英文数据结构或算法,为什么不用别的数据结构或算法]:
[一句话思路]:
[输入量]:空: 正常情况:特大:特小:程序里处理到的特殊情况:异常情况(不合法不合理的输入):
[画图]:
[一刷]:
[二刷]:
[三刷]:
[四刷]:
[五刷]:
[五分钟肉眼debug的结果]:
[总结]:
多开几个数组就行了
[复杂度]:Time complexity: O(n) Space complexity: O(n)
[算法思想:迭代/递归/分治/贪心]:
[关键模板化代码]:
[其他解法]:
[Follow Up]:
[LC给出的题目变变变]:
[代码风格] :
[是否头一次写此类driver funcion的代码] :
[潜台词] :
class Solution {
public int numSpecialEquivGroups(String[] A) {
//corner case
if (A == null || A.length == 0) return 0; //initialization: 2 arrays and a set
Set<String> set = new HashSet<>();
for (String s : A) {
int[] old = new int[26];
int[] even = new int[26];
for (int i = 0; i < s.length(); i++) {
//add to the old or even array
if (i % 2 == 0) {
even[s.charAt(i) - 'a']++;
} else {
old[s.charAt(i) - 'a']++;
}
}
String sig = Arrays.toString(old) + Arrays.toString(even);
set.add(sig);
}
/*
acb
old [0, 0, 1...]
even [1, 1, 0...] bca
old[0, 0, 1...]
even[1, 1, 0...]
*/ //return
return set.size();
}
}