STL 源码剖析序列式容器之vector(四)

时间:2022-04-12 05:34:01

申明:本文主要参考书籍<STL 源码剖析>

1 vector概述

stl vector是序列容器模板类,其支持指定类型的数据存储和随机访问;

对于vector而言,如果在其尾部插入或删除项,其时间复杂度为常量;如果在中间或者头部插入或者删除项,则其时间复杂度为线性的,因为为了保持原本的相对次序,在插入或者删除项之后的所有项都必须进行移动;简单的说:vector类似于动态数组的概念,该动态数据能容纳任何类型的对象,并且可以按需动态伸缩空间;

总结:由于vector维护的是一个连续线性空间,所以vector支持随机存取
      注意:vector动态增加大小时,并不是在原空间之后持续新空间(因为无法保证原空间之后尚有可供配置的空间),而是以原大小的两倍另外配置一块较大的空间,然后将原内容拷贝过来,然后才开始在原内容之后构造新元素,并释放原空间。因此,对vector的任何操作,一旦引起空间重新配置,指向原vector的所有迭代器就都失效了

常用的vector构造函数

  • 构造一个空元素的vector对象

vector<Element>v;

  • 构造一个容纳10个元素的vector对象(并不表示其最多只能容纳10个元素)

vector<Element>v(10);

  • 构造一个容纳10个元素的vector对象并初始化各个元素项

vector<Element>v(10,Element());

  • 构造一个原有的vector对象的拷贝
    vector<Element>v(v1);

添加元素使用push_back函数将元素添加至vector的末尾等其他方式

获得vector的元素个数使用size函数可以获得vector的元素个数,如果判断vector 的元素个数是否为0,建议使用empty函数


2 vector 注意点:

给定一个

vector<int> v;

表达式v[0]生产一个指向vector中第一个元素的引用,所以,&v[0]是指向那个首元素的指针。vector中的元素被C++标准限定为存储在连续内存中,就像是一个数组,所以,如果我们想要传递v给这样的C风格的API:

void doSomething(const int* pInts, size_t numInts);

我们可以这么做:

doSomething(&v[0], v.size());

也许吧。可能吧。唯一的问题就是,如果v是空的。如果这样的话,v.size()是0,而&v[0]试图产生一个指向根本就不存在的东西的指针。这不是件好事。其结果未定义。一个较安全的方法是这样:

if (!v.empty()) {
doSomething(&v[0], v.size());
}

如果你在一个不好的环境中,你可能会碰到一些半吊子的人物,他们会告诉你说可以用v.begin()代替&v[0],因为(这些讨厌的家伙将会告诉你)begin返回指向vector内部的迭代器,而对于vector,其迭代器实际上是指针。

那经常是正确的,并不总是如此,你不该依赖于此。

begin的返回类型是iterator,而不是一个指针,当你需要一个指向vector内部数据的指针时绝不该使用begin。如果你基于某些原因决定键入v.begin(),就应该键入&*v.begin(),因为这将会产生和&v[0]相同的指针,这样可以让你有更多的打字机会,而且让其他要弄懂你代码得人感觉到更晦涩。坦白地说,如果你正在和告诉你使用v.begin()代替&v[0]的人打交道的话,你该重新考虑一下你的社交圈了。


3 vector 的定义(源代码

#include<iostream>
using namespace std;
#include<memory.h>

// alloc是SGI STL的空间配置器
template <class T, class Alloc = alloc>
class vector
{
public:
// vector的嵌套类型定义,typedefs用于提供iterator_traits<I>支持
typedef T value_type;
typedef value_type* pointer;
typedef value_type* iterator;
typedef value_type& reference;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
protected:
// 这个提供STL标准的allocator接口
typedef simple_alloc <value_type, Alloc> data_allocator;

iterator start; // 表示目前使用空间的头
iterator finish; // 表示目前使用空间的尾
iterator end_of_storage; // 表示实际分配内存空间的尾

void insert_aux(iterator position, const T& x);

// 释放分配的内存空间
void deallocate()
{
// 由于使用的是data_allocator进行内存空间的分配,
// 所以需要同样使用data_allocator::deallocate()进行释放
// 如果直接释放, 对于data_allocator内部使用内存池的版本
// 就会发生错误
if (start)
data_allocator::deallocate(start, end_of_storage - start);
}

void fill_initialize(size_type n, const T& value)
{
start = allocate_and_fill(n, value);
finish = start + n; // 设置当前使用内存空间的结束点
// 构造阶段, 此实作不多分配内存,
// 所以要设置内存空间结束点和, 已经使用的内存空间结束点相同
end_of_storage = finish;
}

public:
// 获取几种迭代器
iterator begin() { return start; }
iterator end() { return finish; }

// 返回当前对象个数
size_type size() const { return size_type(end() - begin()); }
size_type max_size() const { return size_type(-1) / sizeof(T); }
// 返回重新分配内存前最多能存储的对象个数
size_type capacity() const { return size_type(end_of_storage - begin()); }
bool empty() const { return begin() == end(); }
reference operator[](size_type n) { return *(begin() + n); }

// 本实作中默认构造出的vector不分配内存空间
vector() : start(0), finish(0), end_of_storage(0) {}


vector(size_type n, const T& value) { fill_initialize(n, value); }
vector(int n, const T& value) { fill_initialize(n, value); }
vector(long n, const T& value) { fill_initialize(n, value); }

// 需要对象提供默认构造函数
explicit vector(size_type n) { fill_initialize(n, T()); }

vector(const vector<T, Alloc>& x)
{
start = allocate_and_copy(x.end() - x.begin(), x.begin(), x.end());
finish = start + (x.end() - x.begin());
end_of_storage = finish;
}

~vector()
{
// 析构对象
destroy(start, finish);
// 释放内存
deallocate();
}

vector<T, Alloc>& operator=(const vector<T, Alloc>& x);

// 提供访问函数
reference front() { return *begin(); }
reference back() { return *(end() - 1); }

////////////////////////////////////////////////////////////////////////////////
// 向容器尾追加一个元素, 可能导致内存重新分配
////////////////////////////////////////////////////////////////////////////////
// push_back(const T& x)
// |
// |---------------- 容量已满?
// |
// ----------------------------
// No | | Yes
// | |
// ↓ ↓
// construct(finish, x); insert_aux(end(), x);
// ++finish; |
// |------ 内存不足, 重新分配
// | 大小为原来的2倍
// new_finish = data_allocator::allocate(len); <stl_alloc.h>
// uninitialized_copy(start, position, new_start); <stl_uninitialized.h>
// construct(new_finish, x); <stl_construct.h>
// ++new_finish;
// uninitialized_copy(position, finish, new_finish); <stl_uninitialized.h>
////////////////////////////////////////////////////////////////////////////////

void push_back(const T& x)
{
// 内存满足条件则直接追加元素, 否则需要重新分配内存空间
if (finish != end_of_storage)
{
construct(finish, x);
++finish;
}
else
insert_aux(end(), x);
}


////////////////////////////////////////////////////////////////////////////////
// 在指定位置插入元素
////////////////////////////////////////////////////////////////////////////////
// insert(iterator position, const T& x)
// |
// |------------ 容量是否足够 && 是否是end()?
// |
// -------------------------------------------
// No | | Yes
// | |
// ↓ ↓
// insert_aux(position, x); construct(finish, x);
// | ++finish;
// |-------- 容量是否够用?
// |
// --------------------------------------------------
// Yes | | No
// | |
// ↓ |
// construct(finish, *(finish - 1)); |
// ++finish; |
// T x_copy = x; |
// copy_backward(position, finish - 2, finish - 1); |
// *position = x_copy; |
// ↓
// data_allocator::allocate(len); <stl_alloc.h>
// uninitialized_copy(start, position, new_start); <stl_uninitialized.h>
// construct(new_finish, x); <stl_construct.h>
// ++new_finish;
// uninitialized_copy(position, finish, new_finish); <stl_uninitialized.h>
// destroy(begin(), end()); <stl_construct.h>
// deallocate();
////////////////////////////////////////////////////////////////////////////////

iterator insert(iterator position, const T& x)
{
size_type n = position - begin();
if (finish != end_of_storage && position == end())
{
construct(finish, x);
++finish;
}
else
insert_aux(position, x);
return begin() + n;
}

iterator insert(iterator position) { return insert(position, T()); }

void pop_back()
{
--finish;
destroy(finish);
}

iterator erase(iterator position)
{
if (position + 1 != end())
copy(position + 1, finish, position);
--finish;
destroy(finish);
return position;
}


iterator erase(iterator first, iterator last)
{
iterator i = copy(last, finish, first);
// 析构掉需要析构的元素
destroy(i, finish);
finish = finish - (last - first);
return first;
}

// 调整size, 但是并不会重新分配内存空间
void resize(size_type new_size, const T& x)
{
if (new_size < size())
erase(begin() + new_size, end());
else
insert(end(), new_size - size(), x);
}
void resize(size_type new_size) { resize(new_size, T()); }

void clear() { erase(begin(), end()); }

protected:
// 分配空间, 并且复制对象到分配的空间处
iterator allocate_and_fill(size_type n, const T& x)
{
iterator result = data_allocator::allocate(n);
uninitialized_fill_n(result, n, x);
return result;
}

// 提供插入操作
////////////////////////////////////////////////////////////////////////////////
// insert_aux(iterator position, const T& x)
// |
// |---------------- 容量是否足够?
// ↓
// -----------------------------------------
// Yes | | No
// | |
// ↓ |
// 从opsition开始, 整体向后移动一个位置 |
// construct(finish, *(finish - 1)); |
// ++finish; |
// T x_copy = x; |
// copy_backward(position, finish - 2, finish - 1); |
// *position = x_copy; |
// ↓
// data_allocator::allocate(len);
// uninitialized_copy(start, position, new_start);
// construct(new_finish, x);
// ++new_finish;
// uninitialized_copy(position, finish, new_finish);
// destroy(begin(), end());
// deallocate();
////////////////////////////////////////////////////////////////////////////////

template <class T, class Alloc>
void insert_aux(iterator position, const T& x)
{
if (finish != end_of_storage) // 还有备用空间
{
// 在备用空间起始处构造一个元素,并以vector最后一个元素值为其初值
construct(finish, *(finish - 1));
++finish;
T x_copy = x;
copy_backward(position, finish - 2, finish - 1);
*position = x_copy;
}
else // 已无备用空间
{
const size_type old_size = size();
const size_type len = old_size != 0 ? 2 * old_size : 1;
// 以上配置元素:如果大小为0,则配置1(个元素大小)
// 如果大小不为0,则配置原来大小的两倍
// 前半段用来放置原数据,后半段准备用来放置新数据

iterator new_start = data_allocator::allocate(len); // 实际配置
iterator new_finish = new_start;
// 将内存重新配置
try
{
// 将原vector的安插点以前的内容拷贝到新vector
new_finish = uninitialized_copy(start, position, new_start);
// 为新元素设定初值 x
construct(new_finish, x);
// 调整水位
++new_finish;
// 将安插点以后的原内容也拷贝过来
new_finish = uninitialized_copy(position, finish, new_finish);
}
catch(...)
{
// 回滚操作
destroy(new_start, new_finish);
data_allocator::deallocate(new_start, len);
throw;
}
// 析构并释放原vector
destroy(begin(), end());
deallocate();

// 调整迭代器,指向新vector
start = new_start;
finish = new_finish;
end_of_storage = new_start + len;
}
}

////////////////////////////////////////////////////////////////////////////////
// 在指定位置插入n个元素
////////////////////////////////////////////////////////////////////////////////
// insert(iterator position, size_type n, const T& x)
// |
// |---------------- 插入元素个数是否为0?
// ↓
// -----------------------------------------
// No | | Yes
// | |
// | ↓
// | return;
// |----------- 内存是否足够?
// |
// -------------------------------------------------
// Yes | | No
// | |
// |------ (finish - position) > n? |
// | 分别调整指针 |
// ↓ |
// ---------------------------- |
// No | | Yes |
// | | |
// ↓ ↓ |
// 插入操作, 调整指针 插入操作, 调整指针 |
// ↓
// data_allocator::allocate(len);
// new_finish = uninitialized_copy(start, position, new_start);
// new_finish = uninitialized_fill_n(new_finish, n, x);
// new_finish = uninitialized_copy(position, finish, new_finish);
// destroy(start, finish);
// deallocate();
////////////////////////////////////////////////////////////////////////////////

template <class T, class Alloc>
void insert(iterator position, size_type n, const T& x)
{
// 如果n为0则不进行任何操作
if (n != 0)
{
if (size_type(end_of_storage - finish) >= n)
{ // 剩下的备用空间大于等于“新增元素的个数”
T x_copy = x;
// 以下计算插入点之后的现有元素个数
const size_type elems_after = finish - position;
iterator old_finish = finish;
if (elems_after > n)
{
// 插入点之后的现有元素个数 大于 新增元素个数
uninitialized_copy(finish - n, finish, finish);
finish += n; // 将vector 尾端标记后移
copy_backward(position, old_finish - n, old_finish);
fill(position, position + n, x_copy); // 从插入点开始填入新值
}
else
{
// 插入点之后的现有元素个数 小于等于 新增元素个数
uninitialized_fill_n(finish, n - elems_after, x_copy);
finish += n - elems_after;
uninitialized_copy(position, old_finish, finish);
finish += elems_after;
fill(position, old_finish, x_copy);
}
}
else
{ // 剩下的备用空间小于“新增元素个数”(那就必须配置额外的内存)
// 首先决定新长度:就长度的两倍 , 或旧长度+新增元素个数
const size_type old_size = size();
const size_type len = old_size + max(old_size, n);
// 以下配置新的vector空间
iterator new_start = data_allocator::allocate(len);
iterator new_finish = new_start;
__STL_TRY
{
// 以下首先将旧的vector的插入点之前的元素复制到新空间
new_finish = uninitialized_copy(start, position, new_start);
// 以下再将新增元素(初值皆为n)填入新空间
new_finish = uninitialized_fill_n(new_finish, n, x);
// 以下再将旧vector的插入点之后的元素复制到新空间
new_finish = uninitialized_copy(position, finish, new_finish);
}
# ifdef __STL_USE_EXCEPTIONS
catch(...)
{
destroy(new_start, new_finish);
data_allocator::deallocate(new_start, len);
throw;
}
# endif /* __STL_USE_EXCEPTIONS */
destroy(start, finish);
deallocate();
start = new_start;
finish = new_finish;
end_of_storage = new_start + len;
}
}
}
};


4 前面也说了很多访问容器vector的方法(那么也不得不说说迭代器)

标准库还提供了另一种检测元素的方法:使用迭代器(iterator)。迭代器是一种允许程序员检查容器内元素,并实现元素遍历的数据类型

标准库为每一种标准容器(包括vector)定义了一种迭代器类型。迭代器类型提供了比下标操作更一般化的方法:所有的标准库容器都定义了相应的迭代器类型,而只有少数的容器支持下标操作。因为迭代器对所有的容器都适用,现代C++程序更倾向于使用迭代器而不是下标操作访问容器元素,即使对支持下标操作的vector类型也这样。

4.1 vector 的迭代器定义如下:

vector<int>::iterator iter;

 这条语句定义了一个名为iter的变量,它的数据类型是由vector<int>定义的iterator类型。每个标准库容器类型都定义了一个名为iterator的成员,这里的iterator与迭代器实际类型的含义相同。

vector的迭代器具体的使用可以参考<STL 源码剖析>

值得特殊说明:迭代器和迭代器类型

首次遇到有关迭代器的术语时可能会困惑不解,产生困惑的原因之一是由于本书中同一个术语iterator表示两个不同的事物。一般性提及的是迭代器的概念;而特别提及的则是由容器定义的具体的iterator类型,如vector<int>。

  重点要理解的是,定义了许多用作迭代器的类型,这些类型在概念上是相关的。若一种类型支持一组确定的行为(这些行为允许程序员遍历容器内的元素,并允许程序员访问这些元素值),我们就称这种类型为迭代器。

  不同的容器类定义了自己的iterator类型,用于访问容器内的元素。换句话说,每个容器定义了一种名为iterator的类型,而这种类型支持(概念上的)迭代器的各种行为


总结:vector 的迭代器当然还是很复杂,自己可以去深究,我也只是简单的抛出概念。

4.2 vector 的数据结构

     vector数据结构,采用的是连续的线性空间,属于线性存储。他采用3个迭代器_First、_Last、_End来指向分配来的线性空间的不同范围,下面是声明3个迭代器变量的源代码

template<class _Ty, class _A= allocator< _Ty> > 
class vector{
...
protected:
iterator _First, _Last, _End;
};

_First指向使用空间的头部,_Last指向使用空间大小(size)的尾部,_End指向使用空间容量(capacity)的尾部。

借助一个小示例:

int data[6]={3,5,7,9,2,4}; vector<int> vdata(data, data+6); vdata.push_back(6); ...

vector初始化时,申请的空间大小为6,存放下了data中的6个元素。当向vdata中插入第7个元素“6”时,vector利用自己的扩充机制重新申请空间,数据存放

结构如下图所示:

STL 源码剖析序列式容器之vector(四)

当插入第7个元素“6”时,vector发现自己的空间不够了,于是申请新的大小为12的内存空间(自增一倍),并将前面已有数据复制到新空间的前部,然后插入第7个元素。此时_Last迭代器指向最后一个有效元素,而_End迭代器指向vector的最后有效空间位置。我们利用vector的成员函数size可以获得当前vector的大小,此时为7;利用capacity成员函数获取当前vector的容量,此时为12。



5 vector对象的操作

操作调用方式

操作说明

v.empty()

判断v是否为空

v.size()

返回v中元素的个数

v.push_back(t)

v的末尾添加一个元素

V[n]

返回v中位置为n的元素

V1 = v2

v1中元素替换为v2中元素副本

V1==v2

判断是否相等

!=, <, <=, >, >=

直接用于vector对象的相互比较


1.push_back   在数组的最后添加一个数据
2.pop_back    去掉数组的最后一个数据 
3.at                得到编号位置的数据
4.begin           得到数组头的指针
5.end             得到数组的最后一个单元+1的指针
6.front        得到数组头的引用
7.back            得到数组的最后一个单元的引用
8.max_size     得到vector最大可以是多大
9.capacity       当前vector分配的大小
10.size           当前使用数据的大小
11.resize         改变当前使用数据的大小,如果它比当前使用的大,者填充默认值
12.reserve      改变当前vecotr所分配空间的大小
13.erase         删除指针指向的数据项
14.clear          清空当前的vector
15.rbegin        将vector反转后的开始指针返回(其实就是原来的end-1)
16.rend          将vector反转构的结束指针返回(其实就是原来的begin-1)
17.empty        判断vector是否为空
18.swap         与另一个vector交换数据


注,以下是一些需要注意的地方

Ø vectorstring一样,长度、下标等类型是size_type,但是vector获取size_type时,需要指定类型,如vector<int>::size_type这样的方式

Ø vector的下标操作,例如v[i],只能用于操作已经存在的元素,可以进行覆盖、获取等,但是不能通过v[i++]这种方式来给一个vector容器添加元素,该功能需要用push_back操作完成,下标不具备该功能

Ø C++程序员习惯优先使用!=而不是<来编写循环判断条件