platform总线是Linux2.6引入的虚拟总线,这类总线没有对应的硬件结构。与之相反,USB总线和PCI总线在内核中是有对应的bus(USB-bus和PCI-bus)的。为了统一管理CPU这些既不属于USB又不属于PCI总线的外设资源,采用了platform虚拟总线。和字符设备不同,在platform架构中,整个驱动分为了device和driver两部分,提高了系统的可移植性。
在学习platform架构时,我们可以借助一点面向对象的思想,注意关注一些重要的结构体,将属性和行为分开学习,再联系起来。
本文所有代码基于linux3.9.5
platform总线驱动架构概览
可以分为如下三层:
- 设备struct platform_device : 资源分配
- 驱动struct platform_driver :初始化
- 总线struct platform_bus :device和driver的匹配,管理
linux内核启动流程和platform总线的注册
kernel在进入C语言阶段,会进入start_kernel函数(init/main.c),进行一些内存管理,调度。该函数的最后会执行rest_init();
下面是rest_init(init/main.c)源码
static noinline void __init_refok rest_init(void)
{
int pid;
rcu_scheduler_starting();
/*
* We need to spawn init first so that it obtains pid 1, however
* the init task will end up wanting to create kthreads, which, if
* we schedule it before we create kthreadd, will OOPS.
*/
kernel_thread(kernel_init, NULL, CLONE_FS | CLONE_SIGHAND);
numa_default_policy();
pid = kernel_thread(kthreadd, NULL, CLONE_FS | CLONE_FILES);
rcu_read_lock();
kthreadd_task = find_task_by_pid_ns(pid, &init_pid_ns);
rcu_read_unlock();
complete(&kthreadd_done);
/*
* The boot idle thread must execute schedule()
* at least once to get things moving:
*/
init_idle_bootup_task(current);
schedule_preempt_disabled();
/* Call into cpu_idle with preempt disabled */
cpu_idle();
}
我们可以看到,该函数做了三件事:
- 首先创建了一个线程执行kernel_init函数,该函数读取根文件系统下的init程序。这个操作完成了从内核态到用户态的转变。init进程作为所以用户态进程的父进程,将永远存在,PID是1
- kthreadd是一个守护进程,PID是2
- idle是空闲进程,cpu空闲时启动
我们进入kernel_init函数,在进入其中的kernel_init_freeable函数,继续进入do_basic_setup函数,这里我们就可以看到对驱动的初始化函数driver_init();
driver_init函数中,倒数第三个执行的函数platform_bus_init就是我们想找的platform总线的注册函数,位于drivers/base/platform.c
int __init platform_bus_init(void)
{
int error;
early_platform_cleanup();
error = device_register(&platform_bus);
if (error)
return error;
error = bus_register(&platform_bus_type);
if (error)
device_unregister(&platform_bus);
return error;
}
除了最后的platform_bus_init位于drivers/base,其余函数都位于init/main.c中。下面我们将注意力从内核启动转移到platform设备上。
platform架构总线
platform_bus是一种设备
struct device platform_bus = {
.init_name = "platform",
};
从上面的结构体我们可以看到,platform_bus是一个名字为“platform”的device。device结构体是内核中设备的基本结构体。其他是设备,例如USB,都和device有关。这些设备的结构体或包含device成员,或实现device的部分成员。C中没有面向对象的继承特性,所以通过这种方式,我们变相的实现了“继承”
platform_bus_type实现总线的管理
struct bus_type platform_bus_type = {
.name = "platform",
.dev_attrs = platform_dev_attrs,
.match = platform_match,
.uevent = platform_uevent,
.pm = &platform_dev_pm_ops, //电源管理
};
我们关注下platform_match这个函数
static int platform_match(struct device *dev, struct device_driver *drv)
{
struct platform_device *pdev = to_platform_device(dev);
struct platform_driver *pdrv = to_platform_driver(drv);
/* Attempt an OF style match first */
if (of_driver_match_device(dev, drv))
return 1;
/* Then try ACPI style match */
if (acpi_driver_match_device(dev, drv))
return 1;
/* Then try to match against the id table */
if (pdrv->id_table)
return platform_match_id(pdrv->id_table, pdev) != NULL;
/* fall-back to driver name match */
return (strcmp(pdev->name, drv->name) == 0);
}
我们可以看到,这个函数的作用是将platform的device和driver名字相比较,相同则返回True表示匹配。
总线注册
上文linux启动过程中已经分析,不赘述
int __init platform_bus_init(void)
{
int error;
early_platform_cleanup();
error = device_register(&platform_bus);
if (error)
return error;
error = bus_register(&platform_bus_type);
if (error)
device_unregister(&platform_bus);
return error;
}
platform设备
platform_device结构体
这里我们要关注下platform_device结构体,位于include/linux/platform_device.h
struct platform_device {
const char * name;
int id;
bool id_auto;
struct device dev;
u32 num_resources;
struct resource * resource;
const struct platform_device_id *id_entry;
/* MFD cell pointer */
struct mfd_cell *mfd_cell;
/* arch specific additions */
struct pdev_archdata archdata;
};
platform_device 封装了device。
- name:设备的名称
- dev:真正有用的设备,通过contain_of,能找到整个platform_device
- num_resources, resource: 系统使用的资源。Linux系统资源包括IO,寄存器,DMA,Bus,Memory等。
设备的注册和卸载
int platform_device_register(struct platform_device *pdev)
{
device_initialize(&pdev->dev);
arch_setup_pdev_archdata(pdev);
return platform_device_add(pdev);
}
void platform_device_unregister(struct platform_device *pdev)
{
platform_device_del(pdev);
platform_device_put(pdev);
}
platform driver
platform_driver结构体
struct platform_driver {
int (*probe)(struct platform_device *);
int (*remove)(struct platform_device *);
void (*shutdown)(struct platform_device *);
int (*suspend)(struct platform_device *, pm_message_t state);
int (*resume)(struct platform_device *);
struct device_driver driver;
const struct platform_device_id *id_table;
};
由device_driver结构体封装而来
struct device_driver {
const char *name;
struct bus_type *bus;
struct module *owner;
const char *mod_name; /* used for built-in modules */
bool suppress_bind_attrs; /* disables bind/unbind via sysfs */
const struct of_device_id *of_match_table;
const struct acpi_device_id *acpi_match_table;
int (*probe) (struct device *dev);
int (*remove) (struct device *dev);
void (*shutdown) (struct device *dev);
int (*suspend) (struct device *dev, pm_message_t state);
int (*resume) (struct device *dev);
const struct attribute_group **groups;
const struct dev_pm_ops *pm;
struct driver_private *p;
};
- probe:将driver绑定到device上调用该函数
- remove:系统卸载设备的时候,将driver和device解绑
- shutdown:关机时使设备静默
- suspend:使设备进入睡眠模式
- resume: 唤醒设备