Java实现二叉树的各种操作

时间:2022-03-10 14:31:07

最近整理了一下关于二叉树的各种算法题,代码如下,欢迎大家提问与转载,转载请注明出处

import java.util.ArrayList;
import java.util.LinkedList;
import java.util.Queue;
import java.util.Stack;

class TreeNode {
int val = 0;
TreeNode left = null;
TreeNode right = null;

public TreeNode(int val) {
this.val = val;
}
}

public class BinaryTree {
//前序遍历:递归法
static ArrayList<Integer> preList = new ArrayList<Integer>();
public ArrayList<Integer> preOrder(TreeNode root) {
if(root == null) return preList;
preList.add(root.val);

if(root.left == null && root.right == null) return preList;

preOrder(root.left);
preOrder(root.right);

return preList;
}

//前序遍历:迭代法,借助栈
public ArrayList<Integer> preOrder2(TreeNode root) {
ArrayList<Integer> preList2 = new ArrayList<Integer>();
if(root == null) return preList;

Stack<TreeNode> stack = new Stack<TreeNode>();
stack.push(root);
while(!stack.isEmpty()) {
TreeNode temp = stack.pop();
preList2.add(temp.val);

if(temp.right != null) {
stack.push(temp.right);
}

if(temp.left != null) {
stack.push(temp.left);
}
}

return preList2;
}

//中序遍历:递归法
ArrayList<Integer> inList = new ArrayList<Integer>();
public ArrayList<Integer> inOrder(TreeNode root) {
if(root == null) return inList;

if(root.left == null && root.right == null) { //递归终止条件
inList.add(root.val);
return inList;
}

inOrder(root.left);
inList.add(root.val);
inOrder(root.right);

return inList;
}

//中序遍历:迭代法,借助栈
public ArrayList<Integer> inOrder2(TreeNode root) {
ArrayList<Integer> inList2 = new ArrayList<Integer>();
if(root == null) return inList2;

Stack<TreeNode> stack = new Stack<TreeNode>();
TreeNode node = root;
while(node != null || !stack.isEmpty()) {
while(node != null) { //中序遍历核心思想:添加某个元素之前要添加它的所有左节点
stack.push(node);
node = node.left;
}

node = stack.pop();
inList2.add(node.val);
node = node.right;
}

return inList2;
}

//后序遍历:递归法
static ArrayList<Integer> postList = new ArrayList<Integer>();
public ArrayList<Integer> postOrder(TreeNode root) {
if(root == null) return postList;

if(root.left == null && root.right == null) {
postList.add(root.val);
return postList;
}

postOrder(root.left);
postOrder(root.right);
postList.add(root.val);

return postList;
}

//层序遍历:迭代法,借助队列
public ArrayList<Integer> levelOrder(TreeNode root) {
ArrayList<Integer> levelList = new ArrayList<Integer>();
if(root == null)
return levelList;
Queue<TreeNode> queue = new LinkedList<TreeNode>();
queue.offer(root);

while(!queue.isEmpty()) {
TreeNode temp = queue.poll();
if(temp != null) {
levelList.add(temp.val);
}

if(temp.left != null) {
queue.offer(temp.left);
}

if(temp.right != null) {
queue.offer(temp.right);
}
}

return levelList;
}

//Z字型遍历:迭代法,借助栈
public ArrayList<Integer> ZOrder(TreeNode root) {
ArrayList<Integer> ZList = new ArrayList<Integer>();
if(root == null)
return ZList;

Stack<TreeNode> s1 = new Stack<TreeNode>(); //负责奇数层
Stack<TreeNode> s2 = new Stack<TreeNode>(); //负责偶数层
s1.push(root);

while(!s1.isEmpty() || !s2.isEmpty()) {
while(!s1.isEmpty()) {
TreeNode temp = s1.pop();
ZList.add(temp.val);
if(temp.left != null) {
s2.push(temp.left);
}

if(temp.right != null) {
s2.push(temp.right);
}
}

while(!s2.isEmpty()) {
TreeNode temp = s2.pop();
ZList.add(temp.val);
if(temp.right != null) {
s1.push(temp.right);
}

if(temp.left != null) {
s1.push(temp.left);
}
}
}

return ZList;
}

//求二叉树的深度
public int getDepth(TreeNode root) {
if(root == null)
return 0;

int leftDepth = getDepth(root.left);
int rightDepth = getDepth(root.right);

return leftDepth > rightDepth ? leftDepth + 1 : rightDepth + 1;
}


public static void main(String[] args) {
TreeNode root1 = new TreeNode(1);
root1.left = new TreeNode(2);
root1.right = new TreeNode(3);

root1.left.left = new TreeNode(4);
root1.left.right = new TreeNode(5);
root1.left.left.left = new TreeNode(8);

root1.right.left = new TreeNode(6);
root1.right.right = new TreeNode(7);
root1.right.right.right = new TreeNode(9);

BinaryTree t = new BinaryTree();

// ArrayList<Integer> list = t.ZOrder(root1);
// for(int i : list) {
// System.out.print(i + " ");
// }

System.out.println(t.getDepth(root1));
}
}