题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1576
题目大意:求(A/B)mod 9973。但是给出的A是mod形式n,n=A%9973。
解题思路:
两种思路,一种从乘法逆元角度,另一种从扩展GCD推公式角度。
①乘法逆元:
先来看下逆元和乘法逆元的关系,对于A*X=B,有X=A-1*B,A-1就是普通的逆元了,在这里就是倒数。
如果A*X=B mod n,变成同余式了,那么A-1依然是存在的,只不过不是倒数了,一般把同余之后的逆元称为乘法逆元。( - -。好像这个定义是错的)。
题目如果是(A/B) mod 9973, 那就麻烦了,因为乘除法不支持mod同余运算,需要转化为逆元计算,乘法变除法,除法变乘法。且题目说gcd(B,9973)=1,所以取B的乘法逆元b=mod_reverse(B,9973)。
那么题目就转化成(A*b)mod 9973,再化简一下,(A%9973*b)%9973, 因为A%9973=n,
所以最后结果就是(n*b)mod 9973
#include "cstdio"
#define LL long long
LL ex_gcd(LL a,LL b,LL &x,LL &y)
{
if(a==&&b==) return -;
if(b==) {x=;y=;return a;}
LL d=ex_gcd(b,a%b,y,x);
y-=a/b*x;
return d;
}
LL mod_reverse(LL a,LL n)
{
LL x,y,d=ex_gcd(a,n,x,y);
if(d==) return (x%n+n)%n;
else return -;
}
int main()
{
LL T,n,B;
scanf("%I64d",&T);
while(T--)
{
scanf("%I64d%I64d",&n,&B);
LL x=mod_reverse(B,);
printf("%I64d\n",(n*x)%);
}
}
②扩展GCD角度:
设A=9973*y+n,因为A%B=0,所以(9973*y+n)=B*x,其中x=A/B
移项,有B*x+9973*(-y)=n。
联想到扩展GCD的式子:B*X+9973*Y=1,两边都乘以n,B*(nX)+9973*(nY)=n。
这样x=nX,y=-nY,只要求出X和Y就行了,套扩展GCD模板即可。
注意这里扩展GCD求出的一组x和y可能都是负值,如果x%9973是错的,对负数取模的方法是(x%mod+mod)%mod.
#include "cstdio"
#define LL long long
LL ex_gcd(LL a,LL b,LL &x,LL &y)
{
if(a==&&b==) return -;
if(b==) {x=;y=;return a;}
LL d=ex_gcd(b,a%b,y,x);
y-=a/b*x;
return d;
}
int main()
{
LL T,n,B;
scanf("%I64d",&T);
while(T--)
{
scanf("%I64d%I64d",&n,&B);
LL x,y;
ex_gcd(B,,x,y);
x*=n;
printf("%I64d\n",(x%+)%);
}
}
12168956 | 2014-11-13 00:56:37 | Accepted | 1576 | 0MS | 228K | 519B | C++ | Physcal |