大神题解:
http://blog.csdn.net/u014800748/article/details/47680899
The sum of gcd
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 526 Accepted Submission(s): 226
Problem Description
You have an array
A,the length of
A is
n
Let f(l,r)=∑ri=l∑rj=igcd(ai,ai+1....aj)
Let f(l,r)=∑ri=l∑rj=igcd(ai,ai+1....aj)
Input
There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
First line has one integers n
Second line has n integers Ai
Third line has one integers Q,the number of questions
Next there are Q lines,each line has two integers l, r
1≤T≤3
1≤n,Q≤104
1≤ai≤109
1≤l<r≤n
First line has one integers n
Second line has n integers Ai
Third line has one integers Q,the number of questions
Next there are Q lines,each line has two integers l, r
1≤T≤3
1≤n,Q≤104
1≤ai≤109
1≤l<r≤n
Output
For each question,you need to print
f(l,r)
Sample Input
2 5 1 2 3 4 5 3 1 3 2 3 1 4 4 4 2 6 9 3 1 3 2 4 2 3
Sample Output
9 6 16 18 23 10
Author
SXYZ
Source
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <vector> using namespace std; const int maxn=10100; typedef long long int LL; struct G { G(){} G(int _id,LL _g):id(_id),g(_g){} int id; LL g; void toString() { printf("id: %d g: %lld\n",id,g); } }; int n,a[maxn],Q; vector<G> VL[maxn],VR[maxn]; struct Que { int L,R,id; bool operator<(const Que& que) const { if(L!=que.L) return L<que.L; return R<que.R; } }que[maxn]; void PreInit() { /// get Left Point /// 以i为右端点,预处理出左边的段 for(int i=1;i<=n;i++) { VL[i].clear(); if(i==1) { VL[i].push_back(G(i,a[i])); } else { LL curg=a[i];int L=i; for(auto &it : VL[i-1]) { int g=__gcd(it.g,curg); if(g!=curg) VL[i].push_back(G(L,curg)); curg=g; L=it.id; } VL[i].push_back(G(L,curg)); } } /// get Right Point /// 以i为左端点,预处理出右边的段 for(int i=n;i>=1;i--) { VR[i].clear(); if(i==n) { VR[i].push_back(G(i,a[i])); } else { LL curg=a[i];int R=i; for(auto &it : VR[i+1]) { int g=__gcd(curg,it.g); if(g!=curg) VR[i].push_back(G(R,curg)); curg=g; R=it.id; } VR[i].push_back(G(R,curg)); } } } /// 计算L,R之间的值 LL calu(int type,int L,int R) { LL ret=0; if(type==0) { int tr=R; for(auto &it : VL[R]) { if(it.id>=L) { ret+=(tr-it.id+1)*it.g; tr=it.id-1; } else { ret+=(tr-L+1)*it.g; break; } } } else if(type==1) { int tr=L; for(auto &it : VR[L]) { if(it.id<=R) { ret+=(it.id-tr+1)*it.g; tr=it.id+1; } else { ret+=(R-tr+1)*it.g; break; } } } return ret; } LL ans[maxn]; int main() { int T_T; scanf("%d",&T_T); while(T_T--) { scanf("%d",&n); for(int i=1;i<=n;i++) scanf("%d",a+i); PreInit(); scanf("%d",&Q); for(int i=0,l,r;i<Q;i++) { scanf("%d%d",&l,&r); que[i].L=l; que[i].R=r; que[i].id=i; } sort(que,que+Q); int L=1,R=0; LL ret=0; for(int i=0;i<Q;i++) { while(R<que[i].R) { R++; ret+=calu(0,L,R); } while(R>que[i].R) { ret-=calu(0,L,R); R--; } while(L<que[i].L) { ret-=calu(1,L,R); L++; } while(L>que[i].L) { L--; ret+=calu(1,L,R); } ans[que[i].id]=ret; } for(int i=0;i<Q;i++) cout<<ans[i]<<endl; } return 0; }