BZOJ-4010 菜肴制作 贪心+堆+(拓扑图拓扑序)

时间:2021-08-21 05:18:06
无意做到...char哥还中途强势插入干我...然后据他所言,看了一会题,一转头,我爆了正解....可怕

4010: [HNOI2015]菜肴制作

Time Limit: 5 Sec Memory Limit: 512 MB

Submit: 1001 Solved: 490

[Submit][Status][Discuss]

Description

知名美食家小 A被邀请至ATM 大酒店,为其品评菜肴。

ATM 酒店为小 A 准备了 N 道菜肴,酒店按照为菜肴预估的质量从高到低给予1

到N的顺序编号,预估质量最高的菜肴编号为1。由于菜肴之间口味搭配的问题,

某些菜肴必须在另一些菜肴之前制作,具体的,一共有 M 条形如“i 号菜肴‘必须’

先于 j 号菜肴制作”的限制,我们将这样的限制简写为< i ,j >。现在,酒店希望能求

出一个最优的菜肴的制作顺序,使得小 A能尽量先吃到质量高的菜肴:也就是说,

(1)在满足所有限制的前提下,1 号菜肴“尽量”优先制作;(2)在满足所有限制,1

号菜肴“尽量”优先制作的前提下,2号菜肴“尽量”优先制作;(3)在满足所有限

制,1号和2号菜肴“尽量”优先的前提下,3号菜肴“尽量”优先制作;(4)在满

足所有限制,1 号和 2 号和 3 号菜肴“尽量”优先的前提下,4 号菜肴“尽量”优

先制作;(5)以此类推。

例1:共4 道菜肴,两条限制<3,1>、<4,1>,那么制作顺序是 3,4,1,2。例2:共

5道菜肴,两条限制<5,2>、 <4,3>,那么制作顺序是 1,5,2,4,3。例1里,首先考虑 1,

因为有限制<3,1>和<4,1>,所以只有制作完 3 和 4 后才能制作 1,而根据(3),3 号

又应“尽量”比 4 号优先,所以当前可确定前三道菜的制作顺序是 3,4,1;接下来

考虑2,确定最终的制作顺序是 3,4,1,2。例 2里,首先制作 1是不违背限制的;接

下来考虑 2 时有<5,2>的限制,所以接下来先制作 5 再制作 2;接下来考虑 3 时有

<4,3>的限制,所以接下来先制作 4再制作 3,从而最终的顺序是 1,5,2,4,3。

现在你需要求出这个最优的菜肴制作顺序。无解输出“Impossible!” (不含引号,

首字母大写,其余字母小写)

Input

第一行是一个正整数D,表示数据组数。

接下来是D组数据。

对于每组数据:

第一行两个用空格分开的正整数N和M,分别表示菜肴数目和制作顺序限

制的条目数。

接下来M行,每行两个正整数x,y,表示“x号菜肴必须先于y号菜肴制作”

的限制。(注意:M条限制中可能存在完全相同的限制)

Output

输出文件仅包含 D 行,每行 N 个整数,表示最优的菜肴制作顺序,或

者”Impossible!”表示无解(不含引号)。

Sample Input

3

5 4

5 4

5 3

4 2

3 2

3 3

1 2

2 3

3 1

5 2

5 2

4 3

Sample Output

1 5 3 4 2

Impossible!

1 5 2 4 3

HINT

【样例解释】

第二组数据同时要求菜肴1先于菜肴2制作,菜肴2先于菜肴3制作,菜肴3先于

菜肴1制作,而这是无论如何也不可能满足的,从而导致无解。

100%的数据满足N,M<=100000,D<=3。

Source

一眼感觉是模拟,就是按照要求,做菜呗,真傻...没多想,直接开搞,码完...一看  唉?!似乎我被自己绕进去了.真可怕....

ShallWe大爷说了句…拓扑排序啊….顺其一看….傻逼题!,反向输出字典序最大的拓扑序…证明什么的我也不知道

于是走起...PE?!什么鬼?稍微改了下,PE?...PE了大概7次...点开discuss......好吧.....终于愉快的A了....

代码:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<vector> using namespace std;
int read()
{
int x=0,f=1; char ch=getchar();
while (ch<'0' || ch>'9') {if (ch=='-') f=-1; ch=getchar();}
while (ch>='0' && ch<='9') {x=x*10+ch-'0'; ch=getchar();}
return x*f;
} int n,m,t;
int head[100010],prin[100010],xz[100010];
int cnt=0,num=0;
struct data{int to,next;}edge[100010];
priority_queue <int,vector<int> >q; void add(int u,int v)
{
cnt++;
edge[cnt].to=v;edge[cnt].next=head[u];
head[u]=cnt;
} void solve(int now)
{
q.pop();prin[++num]=now;
for (int i=head[now]; i; i=edge[i].next)
{
xz[edge[i].to]--;
if (xz[edge[i].to]==0) q.push(edge[i].to);
}
} int main()
{
t=read();
while (t--)
{
n=read(),m=read();cnt=0;num=0;
memset(head,0,sizeof(head));
memset(xz,0,sizeof(xz));
for (int i=1; i<=m; i++)
{
int u=read(),v=read();
add(v,u);xz[u]++;
}
for (int i=1; i<=n; i++)
if (!xz[i]) q.push(i);
while (!q.empty()) solve(q.top());
if (num!=n) {puts("Impossible!");continue;}
for (int i=n; i>=1; i--)
printf("%d ",prin[i]);
printf("\n");
}
return 0;
}