如果不允许转化'#'和'.'的话,那么可以直接在'#'和'.'之间连容量为b的边,把所有'#'和一个源点连接,
所有'.'和一个汇点连接,流量不限,那么割就是建围栏(分割'#'和'.')的花费。
问题是'#'和'.'是可以转化的,由刚才的思路,可以联想到,当'#'可以转化成'.'的时候,那么就不需要在它和周围的'.'之间建围栏,
那么可以限制源点到'#'的容量为d,表示最多花费为d,对称地,限制'.'到汇点T容量为f。
然后跑最大流最小割就好了。
这题思路好神啊。。。仔细体会容量表示最多花费和最小割的关系
#include<bits/stdc++.h>
using namespace std; struct Edge
{
int v,cap,nxt;
};
const int maxv = +;
vector<Edge> edges;
#define PB push_back
int head[maxv],cur[maxv]; void AddEdge(int u,int v,int c)
{
edges.PB({v,c,head[u]});
head[u] = edges.size()-;
edges.PB({u,,head[v]});
head[v] = edges.size()-;
} int S = ,T = ;
int lv[maxv];
bool vis[maxv];
int q[maxv]; bool bfs()
{
memset(vis,,sizeof(vis));
int l = , r = ;
lv[S] = ; q[r++] = S; vis[S] = true;
while(r>l){
int u = q[l++];
for(int i = head[u]; ~i; i = edges[i].nxt){
Edge &e = edges[i];
if(!vis[e.v] && e.cap){
lv[e.v] = lv[u]+; vis[e.v] = true;
q[r++] = e.v;
}
}
}
return vis[T];
} int dfs(int u,int a)
{
if(u == T||!a) return a;
int flow = ,f;
for(int &i = cur[u]; ~i; i = edges[i].nxt){
Edge &e = edges[i];
if(lv[e.v] == lv[u]+ && (f = dfs(e.v,min(a,e.cap)))){
flow += f;
e.cap -= f;
edges[i^].cap += f;
a -= f;
if(!a) break;
}
}
return flow;
} const int INF = 0x3f3f3f3f;
int MaxFlow()
{
int flow = ;
while(bfs()){
memcpy(cur,head,sizeof(head));
flow += dfs(S,INF);
}
return flow;
} const int N = ;
char g[N][N+];
int id[N][N];
int h,w;
int d,f,b; int ID(int i,int j) { return i*w+j+; } void init()
{
scanf("%d%d%d%d%d",&w,&h,&d,&f,&b);
edges.clear();
for(int i = ; i < h; i++){
scanf("%s",g[i]);
for(int j = ; j < w; j++){
id[i][j] = ID(i,j);
}
}
memset(head,-,sizeof(head));
}
int dx[] = {,,,-};
int dy[] = {,-,,}; int main()
{
//freopen("in.txt","r",stdin);
int TestCase; scanf("%d",&TestCase);
while(TestCase--){
init();
int cost = ;
for(int i = ; i < h; i++){
for(int j = ; j < w; j++){
if(i == || i == h- || j == || j == w-){
if(g[i][j] == '.') cost += f;
AddEdge(S,id[i][j],INF);
}else {
if(g[i][j] == '#') AddEdge(S,id[i][j],d);
else AddEdge(id[i][j],T,f);
}
for(int k = ; k < ; k++){
int ni = i+dx[k], nj = j+dy[k];
if(ni<||ni>=h||nj<||nj>=w) continue;
AddEdge(id[i][j],id[ni][nj],b);
}
}
}
printf("%d\n",cost+MaxFlow());
}
return ;
}