【LeetCode】Balanced Binary Tree 解题报告

时间:2022-09-02 05:08:52

【题目】

Given a binary tree, determine if it is height-balanced.

For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.

【说明】

不是非常难,思路大家可能都会想到用递归,分别推断左右两棵子树是不是平衡二叉树,假设都是而且左右两颗子树的高度相差不超过1。那么这棵树就是平衡二叉树。

【比較直观的Java代码】

/**
* Definition for binary tree
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public boolean isBalanced(TreeNode root) {
if(root == null){
return true;
}
if(root.left==null && root.right==null){
return true;
}
if(Math.abs(depth(root.left)-depth(root.right)) > 1){
return false;
}
return isBalanced(root.left) && isBalanced(root.right);
} public int depth(TreeNode root){
if(root==null){
return 0;
}
return 1+Math.max(depth(root.left), depth(root.right));
}
}

【改进后】

/**
* Definition for binary tree
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public boolean isBalanced(TreeNode root) {
height(root);
return run(root);
} public boolean run(TreeNode root) {
if (root == null) return true; int l = 0, r = 0;
if (root.left != null) l = root.left.val;
if (root.right != null) r = root.right.val;
if (Math.abs(l - r) <= 1 && isBalanced(root.left) && isBalanced(root.right)) return true; return false;
} public int height(TreeNode root) {
if (root == null) return 0;
root.val = Math.max( height(root.left), height(root.right) ) + 1;
return root.val;
}
}

利用了TreeNode结构中的val,用它来记录以当前结点为根的子树的高度,避免多次计算。