Hadoop Hive与Hbase关系 整合

时间:2020-12-26 04:59:47

用hbase做数据库,但因为hbase没有类sql查询方式,所以操作和计算数据很不方便,于是整合hive,让hive支撑在hbase数据库层面 的 hql查询.hive也即 做数据仓库



1. 基于Hadoop+Hive架构对海量数据进行查询:http://blog.csdn.net/kunshan_shenbin/article/details/7105319

2. HBase 0.90.5 + Hadoop 1.0.0 集成:http://blog.csdn.net/kunshan_shenbin/article/details/7209990

本文的目的是要讲述怎样让Hbase和Hive能互相訪问,让Hadoop/Hbase/Hive协同工作。合为一体。

本文測试步骤主要參考自:http://running.iteye.com/blog/898399

当然。这边博文也是依照官网的步骤来的:http://wiki.apache.org/hadoop/Hive/HBaseIntegration

1. 拷贝hbase-0.90.5.jar和zookeeper-3.3.2.jar到hive/lib下。

注意:怎样hive/lib下已经存在这两个文件的其它版本号(比如zookeeper-3.3.1.jar),建议删除后使用hbase下的相关版本号。

2. 改动hive/conf下hive-site.xml文件。在底部加入例如以下内容:

[html] view plaincopy

<!--  

<property>  

  <name>hive.exec.scratchdir</name>   

  <value>/usr/local/hive/tmp</value>   



</property>   

-->  

 

<property>   

  <name>hive.querylog.location</name>   

  <value>/usr/local/hive/logs</value>   

</property>   

 

<property>  

  <name>hive.aux.jars.path</name>   

  <value>file:///usr/local/hive/lib/hive-hbase-handler-0.8.0.jar,file:///usr/local/hive/lib/hbase-0.90.5.jar,file:///usr/local/hive/lib/zookeeper-3.3.2.jar</value>  



</property> 

注意:假设hive-site.xml不存在则自行创建,或者把hive-default.xml.template文件改名后使用。

详细请參见:http://blog.csdn.net/kunshan_shenbin/article/details/7210020



3. 拷贝hbase-0.90.5.jar到全部hadoop节点(包含master)的hadoop/lib下。

4. 拷贝hbase/conf下的hbase-site.xml文件到全部hadoop节点(包含master)的hadoop/conf下。

注意。hbase-site.xml文件配置信息參照:http://blog.csdn.net/kunshan_shenbin/article/details/7209990

注意,假设3,4两步跳过的话。执行hive时非常可能出现例如以下错误:

[html] view plaincopy

org.apache.hadoop.hbase.ZooKeeperConnectionException: HBase is able to connect to ZooKeeper but the connection closes immediately.   

This could be a sign that the server has too many connections (30 is the default). Consider inspecting your ZK server logs for that error and   

then make sure you are reusing HBaseConfiguration as often as you can. See HTable's javadoc for more information. at org.apache.hadoop.  

hbase.zookeeper.ZooKeeperWatcher.

參考:http://blog.sina.com.cn/s/blog_410d18710100vlbq.html



如今能够尝试启动Hive了。

单节点启动:

> bin/hive -hiveconf hbase.master=master:60000

集群启动:

> bin/hive -hiveconf hbase.zookeeper.quorum=slave

怎样hive-site.xml文件里没有配置hive.aux.jars.path,则能够依照例如以下方式启动。

> bin/hive --auxpath /usr/local/hive/lib/hive-hbase-handler-0.8.0.jar, /usr/local/hive/lib/hbase-0.90.5.jar, /usr/local/hive/lib/zookeeper-3.3.2.jar -hiveconf hbase.zookeeper.quorum=slave

接下来能够做一些測试了。

1.创建hbase识别的数据库:

[sql] view plaincopy

CREATE TABLE hbase_table_1(key int, value string) 

STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler' 

WITH SERDEPROPERTIES ("hbase.columns.mapping" = ":key,cf1:val") 

TBLPROPERTIES ("hbase.table.name" = "xyz"); 

hbase.table.name 定义在hbase的table名称

hbase.columns.mapping 定义在hbase的列族

2.使用sql导入数据

a) 新建hive的数据表

[sql] view plaincopy

<span><span></span></span>hive> CREATE TABLE pokes (foo INT, bar STRING); 

b) 批量插入数据

[sql] view plaincopy

hive> LOAD DATA LOCAL INPATH './examples/files/kv1.txt' OVERWRITE INTO TABLE

pokes; 

c) 使用sql导入hbase_table_1

[sql] view plaincopy

hive> INSERT OVERWRITE TABLE hbase_table_1 SELECT * FROM pokes WHERE foo=86; 

3. 查看数据

[sql] view plaincopy

hive> select * from  hbase_table_1; 

这时能够登录Hbase去查看数据了.

> /usr/local/hbase/bin/hbase shell

hbase(main):001:0> describe 'xyz'  

hbase(main):002:0> scan 'xyz'  

hbase(main):003:0> put 'xyz','100','cf1:val','www.360buy.com'

这时在Hive中能够看到刚才在Hbase中插入的数据了。

hive> select * from hbase_table_1

4. hive訪问已经存在的hbase

使用CREATE EXTERNAL TABLE

[sql] view plaincopy

CREATE EXTERNAL TABLE hbase_table_2(key int, value string) 

STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler' 

WITH SERDEPROPERTIES ("hbase.columns.mapping" = "cf1:val") 

TBLPROPERTIES("hbase.table.name" = "some_existing_table"); 





多列和多列族(Multiple Columns and Families)

1.创建数据库

Java代码 

CREATE TABLE hbase_table_2(key int, value1 string, value2 int, value3 int)  

STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler' 

WITH SERDEPROPERTIES ( 

"hbase.columns.mapping" = ":key,a:b,a:c,d:e" 

); 



2.插入数据

Java代码 

INSERT OVERWRITE TABLE hbase_table_2 SELECT foo, bar, foo+1, foo+2  

FROM pokes WHERE foo=98 OR foo=100; 





这个有3个hive的列(value1和value2,value3),2个hbase的列族(a,d)

Hive的2列(value1和value2)相应1个hbase的列族(a。在hbase的列名称b,c)。hive的另外1列(value3)相应列(e)位于列族(d)



3.登录hbase查看结构

Java代码

hbase(main):003:0> describe "hbase_table_2"  

DESCRIPTION                                                             ENABLED                                 

 {NAME => 'hbase_table_2', FAMILIES => [{NAME => 'a', COMPRESSION => 'N true                                    

 ONE', VERSIONS => '3', TTL => '2147483647', BLOCKSIZE => '65536', IN_M                                         

 EMORY => 'false', BLOCKCACHE => 'true'}, {NAME => 'd', COMPRESSION =>                                          

 'NONE', VERSIONS => '3', TTL => '2147483647', BLOCKSIZE => '65536', IN                                         

 _MEMORY => 'false', BLOCKCACHE => 'true'}]}                                                                    

1 row(s) in 1.0630 seconds

4.查看hbase的数据

Java代码

hbase(main):004:0> scan 'hbase_table_2'  

ROW                          COLUMN+CELL                                                                        

 100                         column=a:b, timestamp=1297695262015, value=val_100                                 

 100                         column=a:c, timestamp=1297695262015, value=101                                     

 100                         column=d:e, timestamp=1297695262015, value=102                                     

 98                          column=a:b, timestamp=1297695242675, value=val_98                                  

 98                          column=a:c, timestamp=1297695242675, value=99                                      

 98                          column=d:e, timestamp=1297695242675, value=100                                     

2 row(s) in 0.0380 seconds

5.在hive中查看

Java代码

hive> select * from hbase_table_2;  

OK  

100     val_100 101     102  

98      val_98  99      100  

Time taken: 3.238 seconds 

參考资料:

http://running.iteye.com/blog/898399

http://heipark.iteye.com/blog/1150648

http://www.javabloger.com/article/apache-hadoop-hive-hbase-integration.html