poj1273 Drainage Ditches

时间:2021-10-01 15:07:38
Drainage Ditches
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 68414   Accepted: 26487

Description

Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch.
Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network.
Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle.

Input

The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is
the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which
this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.

Output

For each case, output a single integer, the maximum rate at which water may emptied from the pond.

Sample Input

5 4
1 2 40
1 4 20
2 4 20
2 3 30
3 4 10

Sample Output

50

Source

网络流最大流经典入门题,学习了算法竞赛入门经典的程序,我用两种方法解,即Dinic算法和ISAP算法。

Dinic算法(邻接表、无cur优化)

15705294

  ksq2013 1273 Accepted 732K 0MS G++ 1634B 2016-07-11 20:44:19
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
const int INF=0x3f3f3f3f;
int n,m,s,t,nxt[800],first[800],ecnt;
struct Edge{int u,v,cap,flow;}e[800];
bool vis[800];
int d[800],cur[800];
int bfs()
{
memset(vis,false,sizeof(vis));
queue<int>q;
q.push(s);
d[s]=0;
vis[s]=true;
while(!q.empty()){
int now=q.front();q.pop();
for(int i=first[now];i;i=nxt[i]){
if(!vis[e[i].v]&&e[i].cap>e[i].flow){
vis[e[i].v]=true;
d[e[i].v]=d[now]+1;
q.push(e[i].v);
}
}
}
return vis[t];
}
int dfs(int x,int a)
{
if(x==t||a==0)return a;
int flow=0,f;
for(int i=first[x];i;i=nxt[i])
if(d[e[i].v]==d[x]+1&&(f=dfs(e[i].v,min(a,e[i].cap-e[i].flow)))>0){
e[i].flow+=f;
e[i^1].flow-=f;
flow+=f;
a-=f;
if(a==0)break;
}
return flow;
}
int Dinic()
{
int flow=0;
while(bfs()){
memset(cur,0,sizeof(cur));
flow+=dfs(s,INF);
}
return flow;
}
void Link()
{
memset(nxt,0,sizeof(nxt));
memset(first,0,sizeof(first));
for(int a,b,c;m;m--){
scanf("%d%d%d",&a,&b,&c);
e[++ecnt].u=a,e[ecnt].v=b,e[ecnt].cap=c,e[ecnt].flow=0;
nxt[ecnt]=first[a],first[a]=ecnt;
e[++ecnt].u=b,e[ecnt].v=a,e[ecnt].cap=0,e[ecnt].flow=0;
nxt[ecnt]=first[b],first[b]=ecnt;
}
}
int main()
{
while(~scanf("%d%d",&m,&n)){
s=1,t=n,ecnt=1;
memset(d,0,sizeof(d));
Link();
printf("%d\n",Dinic());
}
return 0;
}

ISAP算法(邻接表,有gap等优化)

15708393

  ksq2013 1273 Accepted 736K 16MS G++ 2300B 2016-07-12 10:59:51
#include<cstdio>
#include<cstring>
#include<iostream>
#define INF 0x3f3f3f3f
using namespace std;
int n,m,s,t,ecnt,first[800],nxt[800];
struct Edge{int u,v,cap,flow;}e[800];
bool vis[800];
int q[800],d[800],p[800],num[800],cur[800];
void Link()
{
memset(first,0,sizeof(first));
memset(nxt,0,sizeof(nxt));
for(int a,b,c;m;m--){
scanf("%d%d%d",&a,&b,&c);
e[++ecnt].u=a,e[ecnt].v=b,e[ecnt].cap=c,e[ecnt].flow=0;
nxt[ecnt]=first[e[ecnt].u];first[e[ecnt].u]=ecnt;
e[++ecnt].u=b,e[ecnt].v=a,e[ecnt].cap=0,e[ecnt].flow=0;
nxt[ecnt]=first[e[ecnt].u];first[e[ecnt].u]=ecnt;
}
}
void bfs()
{
memset(vis,false,sizeof(vis));
int head=0,tail=1;
q[0]=t;
d[t]=0;
vis[t]=true;
while(head^tail){
int now=q[head];head++;
for(int i=first[now];i;i=nxt[i])
if(!vis[e[i].u]&&e[i].cap>e[i].flow){
vis[e[i].u]=true;
d[e[i].u]=d[now]+1;
q[tail++]=e[i].u;
}
}
}
int Agument()
{
int x=t,a=INF;
while(x^s){
a=min(a,e[p[x]].cap-e[p[x]].flow);
x=e[p[x]].u;
}
x=t;
while(x^s){
e[p[x]].flow+=a;
e[p[x]^1].flow-=a;
x=e[p[x]].u;
}
return a;
}
int ISAP()
{
int flow=0;
bfs();
memset(num,0,sizeof(num));
for(int i=1;i<=n;i++)num[d[i]]++;
int x=s;
for(int i=1;i<=n;i++)cur[i]=first[i];//memset(cur,0,sizeof(cur));
while(d[s]<n){
if(!(x^t)){
flow+=Agument();
x=s;
}
bool advanced=false;
for(int i=cur[x];i;i=nxt[i])
if(e[i].cap>e[i].flow&&d[x]==d[e[i].v]+1){
advanced=true;
p[e[i].v]=i;
cur[x]=i;
x=e[i].v;
break;
}
if(!advanced){
int mn=n-1;
for(int i=first[x];i;i=nxt[i])
if(e[i].cap>e[i].flow)mn=min(mn,d[e[i].v]);
if(--num[d[x]]==0)break;
num[d[x]=mn+1]++;
cur[x]=first[x];
if(x^s)x=e[p[x]].u;
}
}
return flow;
}
int main()
{
while(~scanf("%d%d",&m,&n)){
s=1,t=n,ecnt=1;
Link();
memset(d,0,sizeof(d));
memset(p,0,sizeof(p));
printf("%d\n",ISAP());
}
return 0;
}