传送门:
http://acm.hdu.edu.cn/showproblem.php?pid=1016
Prime Ring Problem
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 63806 Accepted Submission(s): 27457
Problem Description
A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.
Note: the number of first circle should always be 1.
Input
n (0 < n < 20).
Output
The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order.
You are to write a program that completes above process.
Print a blank line after each case.
Sample Input
6
8
8
Sample Output
Case 1:
1 4 3 2 5 6
1 6 5 2 3 4
Case 2:
1 2 3 8 5 6 7 4
1 2 5 8 3 4 7 6
1 4 7 6 5 8 3 2
1 6 7 4 3 8 5 2
Source
Recommend
分析:
经典的素数环问题
dfs
就是全排列的基础上加上素数环要求的检测
code:
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
#define max_v 105
int a[max_v];
int vis[max_v];
int n;
int isp(int x)//素数检测
{
for(int i=;i<=sqrt(x);i++)
{
if(x%i==)
return ;
}
return ;
}
void dfs(int cur)//素数环问题 全排列思想加素数的检测
{
if(cur==n&&isp(a[]+a[n-]))//判断到最后一个数了
{
printf("%d",a[]);//打印
for(int i=;i<n;i++)
{
printf(" %d",a[i]);
}
printf("\n");
return ;
}else
{
for(int i=;i<=n;i++)//找适合放在cur位置的i
{
if(!vis[i]&&isp(i+a[cur-]))//满足要求
{
a[cur]=i;//放入
vis[i]=;//标记
dfs(cur+);//搜索
vis[i]=;//回退
}
}
}
}
int main()
{
int t=,k=;
while(~scanf("%d",&n))
{
//if(k)
//printf("\n");
memset(vis,,sizeof(vis));//标记清空
a[]=;//确定1的位置
printf("Case %d:\n",t);
dfs();//从1开始放数
t++;
k++;
printf("\n");
}
return ;
}