本文从统计学角度讲解了CART(Classification And Regression Tree), Bagging(bootstrap aggregation), Random Forest Boosting四种分类器的特点与分类方法,参考材料为密歇根大学Ji Zhu的pdf与组会上王博的讲解。
- CART(Classification And Regression Tree)
- 那么怎么分割才是最好的呢?即怎样将输入空间分割成矩形是最佳策略呢?这里一般采用三中评价标准策略:
- 从结果可以看出CART可以通过变量选择迭代地建立一棵分类树,使得每次分类平面能最好地将剩余数据分为两类。
- classification tree非常简单,但是经常会有noisy classifiers. 于是引入ensemble classifiers: bagging, random forest, 和boosting。
- Bagging (Breiman1996): 也称bootstrap aggregation
Bagging的策略:
- 从样本集中用Bootstrap采样选出n个样本
- 在所有属性上,对这n个样本建立分类器(CART or SVM or ...)
- 重复以上两步m次,i.e.build m个分类器(CART or SVM or ...)
- 将数据放在这m个分类器上跑,最后vote看到底分到哪一类
Fit many large trees to bootstrap resampled versions of the training data, and classify by majority vote.
- Random forest(Breiman1999):
- 从样本集中用Bootstrap采样选出n个样本,预建立CART
- 在树的每个节点上,从所有属性中随机选择k个属性,选择出一个最佳分割属性作为节点
- 重复以上两步m次,i.e.build m棵CART
- 这m个CART形成Random Forest
- Boosting(Freund & Schapire 1996):
Fit many large or small trees to reweighted versions of the training data. Classify by weighted majority vote.
首先给个大致的概念,boosting在选择hyperspace的时候给样本加了一个权值,使得loss function尽量考虑那些分错类的样本(i.e.分错类的样本weight大)。
怎么做的呢?
- boosting重采样的不是样本,而是样本的分布,对于分类正确的样本权值低,分类错误的样本权值高(通常是边界附近的样本),最后的分类器是很多弱分类器的线性叠加(加权组合),分类器相当简单。
AdaBoost和RealBoost是Boosting的两种实现方法。general的说,Adaboost较好用,RealBoost较准确。
下面是AdaBoost进行权值设置与更新的过程:
以下是几个算法的性能比较:
对于多类分类(Multi-class),generalization~是类似的过程:
比如对数据进行K类分类,而不通过每次二类分类总共分K-1次的方法,我们只需要每个弱分类器比random guessing好(i.e. 准确率>1/K)
多类分类算法流程:
多类分类器loss function的设计:
===============补充===============
数据挖掘的十大算法,以后可以慢慢研究:
C4.5
K-Means
SVM
Apriori
EM
PageRank
AdaBoost
kNN
NaiveBayes
CART
===============总结===============
Boosting可以进行变量选择,所以最开始的component可以是简单变量。
Boosting可能会overfit,因此在比较早的时候就停下来是正则化boosting的一个方法。
期待更多朋友一起补充……
Reference:
1. http://cos.name/2011/12/stories-about-statistical-learning/
3. WIKI_Bagging (Bootstrap_aggregating)
4. WIKI_CART