38. 数字 k 在有序数组中出现的次数
二分查找:找出第一个 k 和最后一个 k 。
#include <iostream>
using namespace std;
int getFirstOfK(int data[], int length, int k, int low, int high)
{
if(low <= high)
{
int mid = (low + high) / 2;
if(data[mid] == k && (mid == 0 || data[mid-1] != k))
return mid;
else if(data[mid] < k)
low = mid + 1;
else high = mid - 1;
return getFirstOfK(data, length, k, low, high);
}
return -1;
}
int getLastOfK(int data[], int length, int k, int low, int high)
{
if(low <= high)
{
int mid = (low + high) / 2;
if(data[mid] == k && (mid == length-1 || data[mid+1] != k))
return mid;
else if(data[mid] > k)
high = mid - 1;
else low = mid + 1;
return getLastOfK(data, length, k, low, high);
}
return -1;
}
int getNumberOfK(int data[], int length, int k)
{
int count = 0;
if(data != NULL && length > 0)
{
int first = getFirstOfK(data, length, k, 0, length-1);
if(first == -1) return -1; int last = getLastOfK(data, length, k, first, length-1);
count = last - first + 1;
}
return count;
}
int main()
{
int data[] = {1, 2, 3, 3, 3, 3, 4, 5};
cout << getNumberOfK(data, sizeof(data)/4, 3) << endl;
cout << getNumberOfK(data, sizeof(data)/4, 1) << endl;
cout << getNumberOfK(data, sizeof(data)/4, 2) << endl;
cout << getNumberOfK(data, sizeof(data)/4, 5) << endl; return 0;
}
39. 二叉树的深度 && 平衡二叉树的判断 && 二叉树结点的最大距离(题目来自编程之美,解法自创)
note:三种算法都必须是后序遍历。
#include <iostream>
#include <string>
using namespace std;
typedef struct BTNode
{
int v; // default positive Integer.
BTNode *pLeft;
BTNode *pRight;
BTNode(int x) : v(x), pLeft(NULL), pRight(NULL) {}
} BinaryTree;
/********************************************************/
/***** Basic functions ***********/
BinaryTree* createBinaryTree() // input a preOrder traversal sequence, 0 denote empty node.
{
BTNode *pRoot = NULL;
int r;
cin >> r;
if(r != 0) // equal to if(!r) return;
{
pRoot = new BTNode(r);
pRoot->pLeft = createBinaryTree();
pRoot->pRight = createBinaryTree(); }
return pRoot;
}
void release(BinaryTree *root){
if(root == NULL) return;
release(root->pLeft);
release(root->pRight);
delete[] root;
root = NULL;
}
void print(BinaryTree *root, int level = 1){
if(root == NULL) { cout << "NULL"; return; };
string s;
for(int i = 0; i < level; ++i) s += " ";
cout << root->v << endl << s;
print(root->pLeft, level+1);
cout << endl << s;
print(root->pRight, level+1);
}
/******************************************************************/
int getDepth(BinaryTree *root) // leaf Node is at depth 1
{
if(root == NULL) return 0;
int leftDepth = getDepth(root->pLeft);
int rightDepth = getDepth(root->pRight);
return 1 + (leftDepth > rightDepth ? leftDepth : rightDepth);
} bool isBalanced(BinaryTree *root, int *depth) // must be postOrder traversal
{
if(root == NULL) { *depth = 0; return true; };
int leftDepth, rightDepth;
if(isBalanced(root->pLeft, &leftDepth) && isBalanced(root->pRight, &rightDepth))
{
*depth = 1 + (leftDepth > rightDepth ? leftDepth : rightDepth);
if(leftDepth - rightDepth >= -1 && leftDepth - rightDepth <= 1)
return true;
else
return false;
}
}
bool isBalanced(BinaryTree *root)
{
int depth;
return isBalanced(root, &depth);
} int getMaxDistance(BinaryTree *root, int *maxDistance) // leaf node depth is set to 0
{
if(root == NULL) return -1;
int leftDepth = getMaxDistance(root->pLeft, maxDistance);
int rightDepth = getMaxDistance(root->pRight, maxDistance);
if(*maxDistance < 2 + leftDepth + rightDepth)
*maxDistance = 2 + leftDepth + rightDepth;
return 1 + (leftDepth > rightDepth ? leftDepth : rightDepth);
}
int getMaxDistance(BinaryTree *root)
{
int maxDistance = 0;
getMaxDistance(root, &maxDistance);
return maxDistance;
}
int main(){
int TestTime = 3, k = 1;
while(k <= TestTime)
{
cout << "Test " << k++ << ":" << endl; cout << "Create a tree: " << endl;
BinaryTree *pRoot = createBinaryTree();
print(pRoot);
cout << endl; cout << "The depth of binary tree: " << getDepth(pRoot) << endl; if(isBalanced(pRoot))
cout << "Does the tree is a balanced binary tree ? true" << endl;
else
cout << "Does the tree is a balanced binary tree ? false" << endl; cout << "The max distance between two nodes: " << getMaxDistance(pRoot) << endl; release(pRoot);
}
return 0;
}
40. 数组中只出现一次的数字
首先, 参考 Link: Single Number
其次,数组中有两个只出现一次的数字时: 例:{2,4,3,6,3,2,5,5}
#include <iostream>
using namespace std;
void findTwoNumbers(int data[], int length, int *num1, int *num2)
{
if(data == NULL || length < 2) return;
int total = 0;
for(int i = 0; i < length; ++i)
total ^= data[i];
int shift1 = 1;
for(int i = 0; i < sizeof(int)*8; ++i)
{
total >>= 1;
shift1 <<= 1;
if(total & 1)
break;
}
*num1 = *num2 = 0;
for(int i = 0; i < length; ++i)
{
if(data[i] & shift1) *num1 ^= data[i];
else *num2 ^= data[i];
}
}
int main(){
int num1, num2;
int test1[8] = { 2, 4, 3, 6, 3, 2, 5, 5};
findTwoNumbers(test1, 8, &num1, &num2);
cout << num1 << " "<< num2 << endl;
return 0;
}
41. 和为 S 的连续正数序列。
#include <iostream>
using namespace std;
void numsSumToS(int S)
{
int low = 1, high = 2;
while(low < high)
{
int curSum = 0;
for(int i = low; i <= high; ++i)
curSum += i;
if(curSum < S) ++high;
else if(curSum > S) ++low;
else
{
for(int i = low; i <= high; ++i)
cout << i << '\t';
cout << endl;
++high;
}
}
}
int main(){
int S;
while(true)
{
cout << "cin >> ";
cin >> S;
numsSumToS(S);
}
return 0;
}
42. 翻转单词顺序 && 字符串左旋转
note:左旋转 k 位相当于右旋转 N – k 位, N 为字符串长度。