Dinic最大流模版

时间:2022-02-25 04:32:40
struct Edge{
    int from,to,cap,flow;
};
bool cmp(const Edge& a,const Edge& b){
    return a.from < b.from || (a.from == b.from && a.to < b.to);
}
struct Dinic{
    int n,m,s,t;
    vector<Edge> edges;
    vector<int> G[MAXN];
    bool vis[MAXN];
    int d[MAXN];
    int cur[MAXN];
    void init(int n){
        this->n=n;
        for(int i=0;i<=n;i++)G[i].clear();
        edges.clear();
    }
    void AddEdge(int from,int to,int cap){
        edges.push_back((Edge){from,to,cap,0});
        edges.push_back((Edge){to,from,0,0});//当是无向图时,反向边容量也是cap,有向边时,反向边容量是0
        m=edges.size();
        G[from].push_back(m-2);
        G[to].push_back(m-1);
    }
    bool BFS(){
        CL(vis,0);
        queue<int> Q;
        Q.push(s);
        d[s]=0;
        vis[s]=1;
        while(!Q.empty()){
            int x=Q.front();
            Q.pop();
            for(int i=0;i<G[x].size();i++){
                Edge& e=edges[G[x][i]];
                if(!vis[e.to]&&e.cap>e.flow){
                    vis[e.to]=1;
                    d[e.to]=d[x]+1;
                    Q.push(e.to);
                }
            }
        }
        return vis[t];
    }
    int DFS(int x,int a){
        if(x==t||a==0)return a;
        int flow=0,f;
        for(int& i=cur[x];i<G[x].size();i++){
            Edge& e=edges[G[x][i]];
            if(d[x]+1==d[e.to]&&(f=DFS(e.to,min(a,e.cap-e.flow)))>0){
                e.flow+=f;
                edges[G[x][i]^1].flow-=f;
                flow+=f;
                a-=f;
                if(a==0)break;
            }
        }
        return flow;
    }
    //当所求流量大于need时就退出,降低时间
    int Maxflow(int s,int t,int need){
        this->s=s;this->t=t;
        int flow=0;
        while(BFS()){
            CL(cur,0);
            flow+=DFS(s,INF);
            if(flow>need)return flow;
        }
        return flow;
    }
    //最小割割边
    vector<int> Mincut(){
        BFS();
        vector<int> ans;
        for(int i=0;i<edges.size();i++){
            Edge& e=edges[i];
            if(vis[e.from]&&!vis[e.to]&&e.cap>0)ans.push_back(i);
        }
        return ans;
    }
    void Reduce(){
        for(int i = 0; i < edges.size(); i++) edges[i].cap -= edges[i].flow;
    }
    void ClearFlow(){
        for(int i = 0; i < edges.size(); i++) edges[i].flow = 0;
    }
};