最大流:Dinic算法

时间:2021-05-03 04:33:46

蒟蒻居然今天第一次写网络流 我太弱啦!

最大流问题有很多解法 虽然isap常数巨小 但是连dinic都写挂的本蒟蒻并不会orz

那么我们选用比较好实现的dinic来解决最大流问题

来一段定义:

最大流:Dinic算法

     最大流:Dinic算法

    于是我们就可以这样实现啦!

#pragma GCC optimize("O2")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<stack>
#include<set>
#include<map>
#include<limits.h>
#include<ctime>
#define N 100001
typedef long long ll;
const int inf=0x3fffffff;
const int maxn=2017;
using namespace std;
inline int read()
{
int f=1,x=0;char ch=getchar();
while(ch>'9'||ch<'0')
{
if(ch=='-')
f=-1;
ch=getchar();
}
while(ch<='9'&&ch>='0')
{
x=(x<<3)+(x<<1)+ch-'0';
ch=getchar();
}
return f*x;
}
struct tsdl{
int w,to,next;
} edge[N*4];
int dis[N],head[N],q[N],tot,astart,aend;
void add(int ui,int vi,int wi)
{
edge[tot].next=head[ui];
edge[tot].w=wi;
edge[tot].to=vi;
head[ui]=tot++;
}
int m,n;
bool bfs()
{
queue<int>q;
memset(dis,0,sizeof(dis));
dis[astart]=1;
q.push(astart);
while(!q.empty())
{
int x=q.front();
q.pop();
for(int i=head[x];i!=-1;i=edge[i].next)
{
if(edge[i].w&&!dis[edge[i].to])
{
dis[edge[i].to]=dis[x]+1;
q.push(edge[i].to);
}
}
}
if(dis[aend])return 1;
return 0;
}
int dfs(int u,int lim)
{
if(u==aend||!lim)return lim;
int ret=0;
for(int i=head[u];i!=-1;i=edge[i].next)
{
if(dis[edge[i].to]==dis[u]+1)
{
int f=dfs(edge[i].to,min(edge[i].w,lim));
edge[i].w-=f;
edge[i^1].w+=f;
lim-=f,ret+=f;
}
}
if(!ret)dis[u]=-1;
return ret;
}
int main()
{
memset(head,-1,sizeof(head));
int ans=0;
n=read(),m=read(),astart=read(),aend=read();
for(int i=1;i<=m;i++)
{
int u=read(),v=read(),w=read();
add(u,v,w);
add(v,u,0);
}
while(bfs())ans+=dfs(astart,inf);
printf("%d\n",ans);
}

 

 注意反向边权值为0,以及邻接表需要从0开始以保证反向边的对应关系