最大流模版Dinic算法

时间:2020-11-30 04:33:51

网络流的算法有很多, 最基础的为EK算法, 他的时间复杂度为o(n*m^2), Dinic算法的时间复杂为O(m*n^2),Dinic算法是现构造层次图,然后用阻塞流来增广。构造层次图有一个bfs, 增广是用dfs来写。

详细的讲述请参考 刘汝佳写的《算法竞赛入门经典训练指南》 (大白书)

#include<stdio.h>
#include<string.h>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;
const int maxn = 1000 + 10;
const int INF = 0x3f3f3f3f;
struct Edge
{
    int from, to, cap, flow;
    Edge(int u, int v, int c, int f) : from(u), to(v), cap(c), flow(f) {}
};
struct Dinic
{
    int n, m, s, t;
    vector<int> G[maxn];
    vector<Edge> edges;
    bool vis[maxn];
    int d[maxn], cur[maxn];
    void inin(int n)
    {
        this->n = n;
        for(int i = 0; i <= n; i++)
            G[i].clear();
        edges.clear();
    }
    void AddEdge(int from, int to, int cap)
    {
        edges.push_back(Edge(from, to, cap, 0));
        edges.push_back(Edge(to, from, 0, 0));
        m = edges.size();
        G[from].push_back(m-2);
        G[to].push_back(m-1);
    }
    bool bfs()
    {
        memset(vis, false, sizeof(vis));
        queue<int> Q;
        d[s] = 0;
        Q.push(s);
        vis[s] = true;
        while(!Q.empty())
        {
            int x = Q.front();
            Q.pop();
            for(int i = 0; i < G[x].size(); i++)
            {
                Edge& e = edges[G[x][i]];
                if(!vis[e.to] && e.cap>e.flow)
                {
                    d[e.to] = d[x] + 1;
                    Q.push(e.to);
                    vis[e.to] = true;
                }
            }
        }
        return vis[t];
    }
    int dfs(int x, int a)
    {
        if(x==t || a==0)
            return a;
        int f, flow = 0;
        for(int& i = cur[x]; i < G[x].size(); i++)
        {
            Edge& e = edges[G[x][i]];
            if(d[e.to]==d[x]+1 && (f=dfs(e.to, min(a, e.cap-e.flow)))>0)
            {
                e.flow += f;
                edges[G[x][i]^1].flow -= f;
                flow += f;
                a -= f;
                if(a == 0)
                    break;
            }
        }
        return flow;
    }
    int max_flow(int s, int t)
    {
        this->s = s;
        this->t = t;
        int flow = 0;
        while(bfs())
        {
            memset(cur, 0, sizeof(cur));
            flow += dfs(s, INF);
        }
        return flow;
    }
};
Dinic solve;
int main()
{
    int n, m;
    while(~scanf("%d%d", &m, &n))
    {
        solve.inin(n);
        while(m--)
        {
            int a, b, c;
            scanf("%d%d%d", &a, &b, &c);
            solve.AddEdge(a, b, c);
        }
        printf("%d\n", solve.max_flow(1, n));
    }
    return 0;
}