网络流的算法有很多, 最基础的为EK算法, 他的时间复杂度为o(n*m^2), Dinic算法的时间复杂为O(m*n^2),Dinic算法是现构造层次图,然后用阻塞流来增广。构造层次图有一个bfs, 增广是用dfs来写。
详细的讲述请参考 刘汝佳写的《算法竞赛入门经典训练指南》 (大白书)
#include<stdio.h> #include<string.h> #include<queue> #include<vector> #include<algorithm> using namespace std; const int maxn = 1000 + 10; const int INF = 0x3f3f3f3f; struct Edge { int from, to, cap, flow; Edge(int u, int v, int c, int f) : from(u), to(v), cap(c), flow(f) {} }; struct Dinic { int n, m, s, t; vector<int> G[maxn]; vector<Edge> edges; bool vis[maxn]; int d[maxn], cur[maxn]; void inin(int n) { this->n = n; for(int i = 0; i <= n; i++) G[i].clear(); edges.clear(); } void AddEdge(int from, int to, int cap) { edges.push_back(Edge(from, to, cap, 0)); edges.push_back(Edge(to, from, 0, 0)); m = edges.size(); G[from].push_back(m-2); G[to].push_back(m-1); } bool bfs() { memset(vis, false, sizeof(vis)); queue<int> Q; d[s] = 0; Q.push(s); vis[s] = true; while(!Q.empty()) { int x = Q.front(); Q.pop(); for(int i = 0; i < G[x].size(); i++) { Edge& e = edges[G[x][i]]; if(!vis[e.to] && e.cap>e.flow) { d[e.to] = d[x] + 1; Q.push(e.to); vis[e.to] = true; } } } return vis[t]; } int dfs(int x, int a) { if(x==t || a==0) return a; int f, flow = 0; for(int& i = cur[x]; i < G[x].size(); i++) { Edge& e = edges[G[x][i]]; if(d[e.to]==d[x]+1 && (f=dfs(e.to, min(a, e.cap-e.flow)))>0) { e.flow += f; edges[G[x][i]^1].flow -= f; flow += f; a -= f; if(a == 0) break; } } return flow; } int max_flow(int s, int t) { this->s = s; this->t = t; int flow = 0; while(bfs()) { memset(cur, 0, sizeof(cur)); flow += dfs(s, INF); } return flow; } }; Dinic solve; int main() { int n, m; while(~scanf("%d%d", &m, &n)) { solve.inin(n); while(m--) { int a, b, c; scanf("%d%d%d", &a, &b, &c); solve.AddEdge(a, b, c); } printf("%d\n", solve.max_flow(1, n)); } return 0; }