题面
题解
生成函数这厮到底还有什么是办不到的……
首先对于一个数\(i\),如果存在的话可以取无限多次,那么它的生成函数为$$\sum_{j=0}{\infty}x{ij}={1\over 1-x^i}$$
然后我们设\(a_i\in [0,1]\)表示这个数是否存在这个集合里,那么给出了\(F\),满足
\[F(x)=\prod_{i=1}^n\left({1\over 1-x^i}\right)^{a_i}
\]
\]
然后我们现在就是要求出\(a_i\)
首先我们要知道一个东西$$\ln(1-xi)=-\sum_{j=1}{\infty}\frac{x^{ij}}{j}$$
证明抄\(Cyhlnj\)的
\[\ln F(x)=G(x)\\\frac{F'(x)}{F(x)}=G'(x)\\\frac{-ix^{i-1}}{1-x^i}=G'(x)\\-\sum_{j=0}^{\infty} ix^{i-1+ij}=G'(x)\\-\sum_{j=0}^{\infty}\frac{ix^{i+ij}}{i+ij}=G(x)\\-\sum_{j=1}^{\infty}\frac{x^{ij}}{j}=G(x)
\]
\]
我们先对原来的式子两边取\(\ln\),再用上面的式子代入
\[\begin{align}
-\ln F(x)
&=\sum_{i=1}^n a_i\ln (1-x^i)\\
&=-\sum_{i=1}^n a_i\sum_{j=1}^{\infty}\frac{x^{ij}}{j}\\
\end{align}
\]
-\ln F(x)
&=\sum_{i=1}^n a_i\ln (1-x^i)\\
&=-\sum_{i=1}^n a_i\sum_{j=1}^{\infty}\frac{x^{ij}}{j}\\
\end{align}
\]
然后我们枚举\(d=ij\),有
\[\ln F(x)=\sum_{d=1}^{\infty} x^d\sum_{i\mid d}a_i{i\over d}
\]
\]
然后我们现在就求出了\(\sum_{i\mid d}a_i{i\over d}\),这个我们直接枚举倍数,然后让每一个数的倍数减去它的贡献就行了
最后一个问题是,这里的模数不一定有原根,所以得拆系数
//minamoto
#include<bits/stdc++.h>
#define R register
#define ll long long
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
char sr[1<<21],z[20];int K=-1,Z=0;
inline void Ot(){fwrite(sr,1,K+1,stdout),K=-1;}
void print(R int x){
if(K>1<<20)Ot();if(x<0)sr[++K]='-',x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++K]=z[Z],--Z);sr[++K]=' ';
}
const int N=6e5+5;const double Pi=acos(-1.0);
int P;
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
int ksm(R int x,R int y){
R int res=1;
for(;y;y>>=1,x=mul(x,x))if(y&1)res=mul(res,x);
return res;
}
struct cp{
double x,y;
cp(R double xx=0,R double yy=0){x=xx,y=yy;}
inline cp operator +(const cp &b)const{return cp(x+b.x,y+b.y);}
inline cp operator -(const cp &b)const{return cp(x-b.x,y-b.y);}
inline cp operator *(const cp &b)const{return cp(x*b.x-y*b.y,x*b.y+y*b.x);}
inline cp operator *(const double &b)const{return cp(x*b,y*b);}
}O[N];
int r[N],c[N],d[N],e[N],f[N],g[N],h[N],n,len,ans;
void FFT(cp *A,int ty,int lim){
fp(i,0,lim-1)if(i<r[i])swap(A[i],A[r[i]]);
for(R int mid=1;mid<lim;mid<<=1)
for(R int j=0;j<lim;j+=(mid<<1))
for(R int k=0;k<mid;++k){
cp x=A[j+k],y=O[mid+k]*A[j+k+mid];
A[j+k]=x+y,A[j+k+mid]=x-y;
}
if(ty==-1){
reverse(A+1,A+lim);
double k=1.0/lim;fp(i,0,lim-1)A[i]=A[i]*k;
}
}
void Mul(int *a,int *b,int *c,int len){
static cp A[N],B[N],C[N],D[N],F[N],G[N],H[N];
int l=0,lim=1;while(lim<(len<<1))lim<<=1,++l;
fp(i,0,lim-1)r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
for(R int i=1;i<lim;i<<=1)fp(k,0,i-1)O[i+k]=cp(cos(Pi*k/i),sin(Pi*k/i));
fp(i,0,len-1){
A[i].x=a[i]>>15,B[i].x=a[i]&32767;
C[i].x=b[i]>>15,D[i].x=b[i]&32767;
A[i].y=B[i].y=C[i].y=D[i].y=0;
}fp(i,len,lim-1)A[i]=B[i]=C[i]=D[i]=0;
FFT(A,1,lim),FFT(B,1,lim),FFT(C,1,lim),FFT(D,1,lim);
fp(i,0,lim-1)
F[i]=A[i]*C[i],G[i]=A[i]*D[i]+B[i]*C[i],H[i]=B[i]*D[i];
FFT(F,-1,lim),FFT(G,-1,lim),FFT(H,-1,lim);
fp(i,0,len-1)c[i]=(((ll)(F[i].x+0.5)%P<<30)+((ll)(G[i].x+0.5)<<15)+((ll)(H[i].x+0.5)))%P;
fp(i,len,lim-1)c[i]=0;
}
void Inv(int *a,int *b,int len){
if(len==1)return b[0]=ksm(a[0],P-2),void();
Inv(a,b,len>>1);
Mul(a,b,c,len),Mul(c,b,d,len);
fp(i,0,len-1)b[i]=dec(add(b[i],b[i]),d[i]);
}
void Ln(int *a,int *b,int len){
fp(i,1,len-1)e[i-1]=mul(a[i],i);
Inv(a,f,len),Mul(e,f,b,len);
fd(i,len-1,1)b[i]=mul(b[i-1],ksm(i,P-2));
}
int main(){
// freopen("testdata.in","r",stdin);
n=read(),P=read();
int len=1;while(len<=n)len<<=1;
fp(i,1,n)g[i]=read();
g[0]=1,Ln(g,h,len);
fp(i,1,n)h[i]=mul(i,h[i]);
fp(i,1,n)for(R int j=i+i;j<=n;j+=i)h[j]=dec(h[j],h[i]);
fp(i,1,n)if(h[i])++ans;
print(ans),sr[K]='\n';
fp(i,1,n)if(h[i])print(i);
return Ot(),0;
}