Generating cross-validation folds (Java approach)
文献:
http://weka.wikispaces.com/Generating+cross-validation+folds+%28Java+approach%29
This article describes how to generate train/test splits for cross-validation using
the Weka API directly.
The following variables are given:
Instances data = ...; // contains the full dataset we wann
create train/test sets from
int seed = ...; // the seed for
randomizing the data
int folds = ...; // the number of
folds to generate, >=2
Randomize the data
First, randomize
your data:
Random rand = new Random(seed); // create seeded number generator
randData = new
Instances(data); // create copy of
original data
randData.randomize(rand); // randomize data
with number generator
In case your data
has a nominal class and you wanna perform stratified cross-validation:
randData.stratify(folds);
Generate the folds
Single run
Next thing that we
have to do is creating the train and the test set:
for
(int n = 0; n < folds; n++) {
Instances train = randData.trainCV(folds, n);
Instances test = randData.testCV(folds, n);
// further
processing, classification, etc.
...
}
Note:
- the above code is used by the weka.filters.supervised.instance.StratifiedRemoveFolds filter
- the weka.classifiers.Evaluation class and the Explorer/Experimenter
would use this method for obtaining the train set:
Instances train = randData.trainCV(folds, n, rand);
Multiple runs
The example above
only performs one run of a cross-validation. In case you want to run 10 runs of
10-fold cross-validation, use the following loop:
Instances data = ...; // our dataset again, obtained from
somewhere
int runs = 10;
for
(int i = 0; i < runs; i++) {
seed = i+1; // every run gets a
new, but defined seed value
// see:
randomize the data
...
// see: generate
the folds
...
}
一个简单的小实验:
继续对上一节中的红酒和白酒进行分类。分类器没有变化,只是增加了重复试验过程
package assignment2; import weka.core.Instances; import weka.core.converters.ConverterUtils.DataSource; import weka.core.Utils; import weka.classifiers.Classifier; import weka.classifiers.Evaluation; import weka.classifiers.trees.J48; import weka.filters.Filter; import weka.filters.unsupervised.attribute.Remove; import java.io.FileReader; import java.util.Random; public class cv_rw { public static Instances getFileInstances(String filename) throws Exception{ FileReader frData =new FileReader(filename); Instances data = new Instances(frData); int length= data.numAttributes(); String[] options = new String[2]; options[0]="-R"; options[1]=Integer.toString(length); Remove remove =new Remove(); remove.setOptions(options); remove.setInputFormat(data); Instances newData= Filter.useFilter(data, remove); return newData; } public static void main(String[] args) throws Exception { // loads data and set class index Instances data = getFileInstances("D://Weka_tutorial//WineQuality//RedWhiteWine.arff"); // System.out.println(instances); data.setClassIndex(data.numAttributes()-1); // classifier // String[] tmpOptions; // String classname; // tmpOptions = Utils.splitOptions(Utils.getOption("W", args)); // classname = tmpOptions[0]; // tmpOptions[0] = ""; // Classifier cls = (Classifier) Utils.forName(Classifier.class, classname, tmpOptions); // // // other options // int runs = Integer.parseInt(Utils.getOption("r", args));//重复试验 // int folds = Integer.parseInt(Utils.getOption("x", args)); int runs=1; int folds=10; J48 j48= new J48(); // j48.buildClassifier(instances); // perform cross-validation for (int i = 0; i < runs; i++) { // randomize data int seed = i + 1; Random rand = new Random(seed); Instances randData = new Instances(data); randData.randomize(rand); // if (randData.classAttribute().isNominal()) //没看懂这里什么意思,往高手回复,万分感谢 // randData.stratify(folds); Evaluation eval = new Evaluation(randData); for (int n = 0; n < folds; n++) { Instances train = randData.trainCV(folds, n); Instances test = randData.testCV(folds, n); // the above code is used by the StratifiedRemoveFolds filter, the // code below by the Explorer/Experimenter: // Instances train = randData.trainCV(folds, n, rand); // build and evaluate classifier Classifier j48Copy = Classifier.makeCopy(j48); j48Copy.buildClassifier(train); eval.evaluateModel(j48Copy, test); } // output evaluation System.out.println(); System.out.println("=== Setup run " + (i+1) + " ==="); System.out.println("Classifier: " + j48.getClass().getName()); System.out.println("Dataset: " + data.relationName()); System.out.println("Folds: " + folds); System.out.println("Seed: " + seed); System.out.println(); System.out.println(eval.toSummaryString("=== " + folds + "-fold Cross-validation run " + (i+1) + "===", false)); } } }
运行程序得到实验结果:
=== Setup run 1 ===
Classifier:
weka.classifiers.trees.J48
Dataset:
RedWhiteWine-weka.filters.unsupervised.instance.Randomize-S42-weka.filters.unsupervised.instance.Randomize-S42-weka.filters.unsupervised.attribute.Remove-R13
Folds: 10
Seed: 1
=== 10-fold Cross-validation run
1===
Correctly Classified Instances 6415 98.7379 %
Incorrectly Classified
Instances 82 1.2621 %
Kappa statistic 0.9658
Mean absolute error 0.0159
Root mean squared error 0.1109
Relative absolute error 4.2898 %
Root relative squared error 25.7448 %
Total Number of Instances 6497