Codeforces 755 F. PolandBall and Gifts 多重背包+贪心

时间:2022-10-27 04:31:39
F. PolandBall and Gifts
 

It's Christmas time! PolandBall and his friends will be giving themselves gifts. There are n Balls overall. Each Ball has someone for whom he should bring a present according to some permutation ppi ≠ i for all i.

Unfortunately, Balls are quite clumsy. We know earlier that exactly k of them will forget to bring their gift. A Ball number i will get his present if the following two constraints will hold:

  1. Ball number i will bring the present he should give.
  2. Ball x such that px = i will bring his present.

What is minimum and maximum possible number of kids who will not get their present if exactly k Balls will forget theirs?

Input

The first line of input contains two integers n and k (2 ≤ n ≤ 106, 0 ≤ k ≤ n), representing the number of Balls and the number of Balls who will forget to bring their presents.

The second line contains the permutation p of integers from 1 to n, where pi is the index of Ball who should get a gift from the i-th Ball. For all ipi ≠ i holds.

Output

You should output two values — minimum and maximum possible number of Balls who will not get their presents, in that order.

Examples
input
5 2
3 4 1 5 2
output
2 4
Note

In the first sample, if the third and the first balls will forget to bring their presents, they will be th only balls not getting a present. Thus the minimum answer is 2. However, if the first ans the second balls will forget to bring their presents, then only the fifth ball will get a present. So, the maximum answer is 4.

 题意:

  n个人,每个人固定给一个人送一个gift,不会给自己送gift,不会有一个人收到两个gift

  也就是说,每个人会收到一个gift和送出去一个gift,这样的人ans+1

  现在你可以指定k个人不会送出去gift

  ans最小和最大是多少

题解:

  划分为多个置换群

  ans最大去贪心就好了

  最小的话: 如果选取置换群大小相加存在等于k的最小就是k,否则是k+1

  利用以上:跑背包,是否能构成K,范围太大,需要二进制优化多重背包优化到n*∑log(b[i]),另外bitset优化

#include<bits/stdc++.h>
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair
typedef long long LL;
const long long INF = 1e18+1LL;
const double Pi = acos(-1.0);
const int N = 1e6+, maxn = 1e3+, mod = 1e9+, inf = 2e9; int a[N],b[N],n,k,vis[N],H[N],cnt;
int main() {
scanf("%d%d",&n,&k);
for(int i = ; i <= n; ++i) scanf("%d",&a[i]);
for(int i = ; i <= n; ++i) {
if(vis[i]) continue;
int j = a[i],cnts = ;
while(!vis[j]) {
cnts++;
vis[j] = ;
j = a[j];
}
b[++cnt] = cnts;
}
sort(b+,b+cnt+);
int ans2 = ,kk = k;
for(int i = ; i <= cnt; ++i) {
if(kk >= b[i]/) kk-=b[i]/,ans2 += b[i]/*;
else {
ans2 += *kk;
kk = ;
break;
}
}
ans2 += kk;
ans2 = min(n,ans2);
for(int i = ; i <= cnt; ++i) H[b[i]]++;
bitset<N> dp;
dp.set();
for(int i = ; i <= n; ++i) {
if(H[i] == ) continue;
int t = H[i],l = ;
while(t) {
int w = min(t,l);
t -= w;
dp |= dp<<(w*i);
l <<= ;
}
if(dp[k] == ) {
printf("%d %d\n",k,ans2);
return ;
}
}
printf("%d %d\n",+k,ans2);
return ;
}