题目:给出一个有向图,从1到n,每个结点有个权值,每走一步,分值为结点权值的LCM,而且每一步的LCM都要有变化,问到达N的时候分值恰好为K的路径有多少条
记忆化搜索,虽然做过很多了,但是一直比较慢,这次总结出几点
1.注意确定终点状态
2.状态的初始化
3.不可能状态的排除
代码是参考cxlove写的,kuangbin博客要是刷完了,下一个就刷他啦
1 #include<cstdio> 2 #include<iostream> 3 #include<algorithm> 4 #include<cstring> 5 #include<cmath> 6 #include<queue> 7 #include<map> 8 using namespace std; 9 #define MOD 1000000007 10 #define for0n for(i=0;i<n;i++) 11 #define for1n for(i=1;i<=n;i++) 12 #define for0m for(i=0;i<m;i++) 13 #define for1m for(i=1;i<=m;i++) 14 #define cl(a) memset(a,0,sizeof(a)) 15 #define ts printf("*****\n"); 16 const int MAXN=2005; 17 const int MAXM=200005; 18 int n,m,tt,k; 19 int dp[MAXN][MAXN]; 20 struct Edge 21 { 22 int to,next; 23 }edge[MAXM]; 24 int head[MAXN],a[MAXN]; 25 int tot; 26 void addedge(int u,int v) 27 { 28 edge[tot].to=v; 29 edge[tot].next=head[u]; 30 head[u]=tot++; 31 } 32 void init() 33 { 34 tot=0; 35 memset(head,-1,sizeof(head)); 36 } 37 map<int,int> fac; 38 int gcd(int a,int b) 39 { 40 return b==0?a:gcd(b,a%b); 41 } 42 int lcm(int a,int b) 43 { 44 return a/gcd(a,b)*b; 45 } 46 int dfs(int u,int val) 47 { 48 if(dp[u][fac[val]]!=-1) return dp[u][fac[val]]; 49 if(u==n) return val==k; 50 dp[u][fac[val]]=0; 51 for(int i=head[u];i!=-1;i=edge[i].next) 52 { 53 int v=edge[i].to; 54 if(k%a[v]) continue; 55 int temp=lcm(val,a[v]); 56 if(temp>k||temp==val) continue; 57 dp[u][fac[val]]=(dp[u][fac[val]]+dfs(v,temp))%MOD; 58 } 59 return dp[u][fac[val]]; 60 } 61 int main() 62 { 63 int i,j; 64 #ifndef ONLINE_JUDGE 65 freopen("1.in","r",stdin); 66 #endif 67 while(scanf("%d%d%d",&n,&m,&k)!=EOF) 68 { 69 int u,v; 70 int q=1; 71 init(); 72 for0m 73 { 74 scanf("%d%d",&u,&v); 75 addedge(u,v); 76 } 77 for(i=1;i*i<=k;i++) 78 { 79 if(k%i==0) 80 { 81 fac[i]=q++; 82 if(k/i!=i) fac[k/i]=q++; 83 } 84 } 85 for1n 86 { 87 scanf("%d",&a[i]); 88 } 89 if(fac.find(a[1])==fac.end()) printf("0\n"); 90 else 91 { 92 memset(dp,-1,sizeof(dp)); 93 printf("%d\n",dfs(1,a[1])); 94 } 95 } 96 }