C++基于递归算法解决汉诺塔问题与树的遍历功能示例

时间:2022-02-20 14:33:23

本文实例讲述了C++基于递归算法解决汉诺塔问题与树的遍历功能。分享给大家供大家参考,具体如下:

递归是把问题转化为规模缩小的同类问题,然后迭代调用函数(或过程)求得问题的解。递归函数就是直接或间接调用自身的函数

递归两要素:递归关系递归边界(终止条件),递归关系确定了迭代的层次结构,需要深入了解并分解问题;终止条件保证了程序的有穷性。

递归的应用有很多,常见的包括:阶乘运算、斐波那契数列、汉诺塔、数的遍历,还有大名鼎鼎的快排等等。理论上,递归问题都可以由多层循环来实现。递归的每次调用都会消耗一定的栈空间,效率要稍低于循环实现,但递归使函数更加简洁,极大地增加了程序的可读性。这里介绍汉诺塔和树的遍历两种应用。

汉诺塔(hanoi)

有三根相邻的柱子,标号为A,B,C,A柱子上从下到上按金字塔状叠放着n个不同大小的圆盘,要把所有盘子一个一个移动到柱子C上,并且每次移动同一根柱子上都不能出现大盘子在小盘子上方。

C++基于递归算法解决汉诺塔问题与树的遍历功能示例

递归规则:先把a上的n-1个搬到b上,再把a上第n个搬到c,然后把b上的n-1个搬到c上;终止条件是n=0。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
/*
 *作者:侯凯
 *说明:目标:把n个盘子从a往c搬
 */
void hanoi(int n, char a,char b,char c)
{
  if(n>0)
  {
    hanoi(n-1,a,c,b);
    cout<<a<<"->"<<c<<endl;
    hanoi(n-1,b,a,c);
  }
}
void main()
{
  hanoi(4,'A','B','C');
}

这样程序便十分简洁的实现了看似复杂的功能,下面再看一个经典的问题:

遍历二叉树

二叉树的遍历是指从根节点出发,按照某种次序依次访问二叉树中的所有结点,使得每个结点被访问一次且仅被访问一次。遍历方法有四种:前序遍历(先访问根节点,然后前序遍历左子树,最后前序遍历右子树)、中序遍历(左子树->根节点->右子树)、后序遍历(左子树->右子树->根节点)和层序遍历(每一层自左向右,各层自上向下访问)。

可见前三种遍历方法的定义就体现了递归的思想,算法实现如下:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
//前序遍历
void PreorderTra(BiTree T)
{
  if(T == NULL)
  {
    return;
  }
  printf("%c",T->data);//输出结点数据,可更改为其他对结点的操作
  PreorderTra(T->lchild);//前序遍历左子树
  PreorderTra(T->rchild);//前序遍历右子树
}
//中序遍历
void InorderTra(BiTree T)
{
  if(T == NULL)
  {
    return;
  }
  InorderTra(T->lchild);//中序遍历左子树
  printf("%c",T->data);//输出结点数据,可更改为其他对结点的操作
  InorderTra(T->rchild);//中序遍历右子树
}
//后序遍历
void PostorderTra(BiTree T)
{
  if(T == NULL)
  {
    return;
  }
  PostorderTra(T->lchild);//后序遍历左子树
  PostorderTra(T->rchild);//后序遍历右子树
  printf("%c",T->data);//输出结点数据,可更改为其他对结点的操作
}

其中二叉树的结构如下:

?
1
2
3
4
5
typedef struct BiTNode
{
  ElemType data;
  struct BiTNode *lchild,*rchild;
}BitNode,*BiTree;

希望本文所述对大家C++程序设计有所帮助。

原文链接:http://www.cnblogs.com/houkai/p/3480938.html