POJ 2135 Farm Tour && HDU 2686 Matrix && HDU 3376 Matrix Again 费用流求来回最短路

时间:2022-08-05 04:21:15

累了就要写题解,近期总是被虐到没脾气。

来回最短路问题貌似也能够用DP来搞。只是拿费用流还是非常方便的。

能够转化成求满流为2 的最小花费。一般做法为拆点,对于 i 拆为2*i 和 2*i+1。然后连一条流量为1(花费依据题意来定) 的边来控制每一个点仅仅能通过一次。

额外加入source和sink来控制满流为2。

代码都雷同,以HDU3376为例。

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <queue>
#include <cmath>
#include <stack>
#include <map> #pragma comment(linker, "/STACK:1024000000");
#define EPS (1e-8)
#define LL long long
#define ULL unsigned long long
#define _LL __int64
#define INF 0x3f3f3f3f
#define Mod 6000007 using namespace std; const int EDGE = 6000000,POINT = 730000; struct E
{
int Max,cost,v,next;
}edge[EDGE]; int head[POINT]; int Top; void Link(int u,int v,int w,int cost)
{
edge[Top].v = v;
edge[Top].Max = w;
edge[Top].cost = cost;
edge[Top].next = head[u];
head[u] = Top++;
} int Map[610][610]; int dis[POINT],cur[POINT],flow[POINT];
bool mark[POINT]; void Updata(int site,int flow,int &cost)
{
for(;cur[site] != -1; site = edge[cur[site]^1].v)
{
edge[cur[site]].Max -= flow;
edge[cur[site]^1].Max += flow;
cost += edge[cur[site]].cost * flow;
}
} queue<int> q; int spfa(int S,int T,int &cost)
{
memset(mark,false,sizeof(mark));
memset(dis,INF,sizeof(dis)); cur[S] = -1,dis[S] = 0,flow[S] = INF; q.push(S); int f,t; while(q.empty() == false)
{
f = q.front();
q.pop();
mark[f] = false; for(int p = head[f];p != -1; p = edge[p].next)
{
t = edge[p].v;
if(edge[p].Max && dis[t] > dis[f] + edge[p].cost)
{
dis[t] = dis[f] + edge[p].cost;
cur[t] = p;
flow[t] = min(flow[f],edge[p].Max); if(mark[t] == false)
{
mark[t] = true;
q.push(t);
}
}
}
} if(dis[T] == INF)
return 0;
Updata(T,flow[T],cost);
return flow[T];
} int Cal_Max_Flow_Min_Cost(int S,int T,int n)
{
int temp,flow = 0,cost = 0; do
{
temp = spfa(S,T,cost);
flow += temp;
}while(temp);
return cost;
} inline int Cal(int x,int y,int n)
{
return ((x-1)*n+y)*2-1;
} int main()
{
int n;
int i,j; while(scanf("%d",&n) != EOF)
{
memset(head,-1,sizeof(head));
Top = 0; for(i = 1;i <= n; ++i)
{
for(j = 1;j <= n; ++j)
{
scanf("%d",&Map[i][j]);
if(i == j && (i == 1 || i == n))
Link(Cal(i,j,n),Cal(i,j,n)+1,2,-Map[i][j]);
else
Link(Cal(i,j,n),Cal(i,j,n)+1,1,-Map[i][j]);
Link(Cal(i,j,n)+1,Cal(i,j,n),0,Map[i][j]);
}
} for(i = 1;i <= n; ++i)
{
for(j = 1;j <= n; ++j)
{
if(j < n)
{
Link(Cal(i,j,n)+1,Cal(i,j+1,n),1,0);
Link(Cal(i,j+1,n),Cal(i,j,n)+1,0,0);
}
if(i < n)
{
Link(Cal(i,j,n)+1,Cal(i+1,j,n),1,0);
Link(Cal(i+1,j,n),Cal(i,j,n)+1,0,0);
}
}
} printf("%d\n",-Cal_Max_Flow_Min_Cost(1,n*n*2,n*n*2) - Map[1][1] - Map[n][n]);
}
return 0;
}