题意:给定一个数 n,问你0<= a <=n, 0 <= b <= n,有多少个不同的最简分数。
析:这是一个欧拉函数题,由于当时背不过模板,又不让看书,我就暴力了一下,竟然AC了,才2s,题目是给了3s,很明显是由前面递推,前面成立的,后面的也成立,
只要判定第 i 个有几个,再加前 i-1 个就好,第 i 个就是判断与第 i 个互质的数有多少,这就是欧拉函数了。
代码如下:
这是欧拉函数的。
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <stack>
using namespace std; typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 10000 + 5;
const int mod = 1e9;
const char *mark = "+-*";
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, 1, 0, -1};
int n, m;
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
}
int ans[maxn];
int phi[maxn]; void init(){
memset(phi, 0, sizeof(phi));
phi[1] = 1;
for(int i = 2; i <= 10000; ++i) if(!phi[i])
for(int j = i; j <= 10000; j += i){
if(!phi[j]) phi[j] = j;
phi[j] = phi[j] / i * (i-1);
} ans[2] = 3;
for(int i = 3; i <= 10000; ++i)
ans[i] = ans[i-1] + phi[i];
} int main(){
init();
int T; cin >> T;
while(T--){
scanf("%d %d", &m, &n);
printf("%d %d\n", m, ans[n]);
}
return 0;
}
这是我暴力的:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <stack>
using namespace std; typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 100 + 5;
const int mod = 1e9;
const char *mark = "+-*";
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, 1, 0, -1};
int n, m;
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
}
int ans[10005]; int main(){
ans[1] = 2; ans[2] = 3;
for(int i = 3; i <= 10000; ++i){
int cnt = 0;
for(int j = 1; j <= i/2; ++j){
if(__gcd(j, i) == 1) ++cnt;
}
ans[i] = ans[i-1] + 2*cnt;
}
int T; cin >> T;
while(T--){
scanf("%d %d", &m, &n);
printf("%d %d\n", m, ans[n]);
}
return 0;
}