有源汇上下界可行流(POJ2396)

时间:2021-03-19 04:18:56

题意:给出一个n*m的矩阵的每行和及每列和,还有一些格子的限制,求一组合法方案。

源点向行,汇点向列,连一条上下界均为和的边。

对于某格的限制,从它所在行向所在列连其上下界的边。

求有源汇上下界可行流即可。

具体做法可以从汇点向源点连容量为正无穷的边,转成无源汇上下界可行流。

然后可以新建超级源汇,对于一条下界为l,上界为r的边(x,y),从超级源点向y,x向超级汇点连容量为l的边,x向y连容量为r-l的边。

如果那些容量为l的边没满流,则无解。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std; const int inf = 0x3f3f3f3f, N = , M = ;
char op[];
int q,n,m,c,x,y,z,s,t,S,T,e=,fr,l[][],r[][],ans[][],hd[N],nxt[M],to[M],f[M],ch[N];
void add(int x, int y, int z) {
to[++e] = y, f[e] = z, nxt[e] = hd[x], hd[x] = e;
to[++e] = x, f[e] = , nxt[e] = hd[y], hd[y] = e;
}
void upd(int x, int y) {
if(op[] == '<') r[x][y] = min(r[x][y], z-);
else if(op[] == '>') l[x][y] = max(l[x][y], z+);
else l[x][y] = max(l[x][y], z), r[x][y] = min(r[x][y], z);
} bool tel() {
memset(ch, -, sizeof ch);
queue<int> q;
q.push(S), ch[S] = ;
while(!q.empty()) {
int u = q.front(); q.pop();
for(int i = hd[u]; i; i = nxt[i]) if(ch[to[i]] == - && f[i]) ch[to[i]] = ch[u]+, q.push(to[i]);
}
return ch[T] != -;
}
int zng(int a, int b) {
if(a == T) return b;
int r = ;
for(int i = hd[a]; i && b > r; i = nxt[i]) if(ch[to[i]] == ch[a]+ && f[i]) {
int rr = zng(to[i], min(b-r, f[i]));
f[i] -= rr, f[i^] += rr, r += rr;
}
if(!r) ch[a] = -;
return r;
} int main() {
scanf("%d", &q);
while(q--) {
e = ;
memset(hd, , sizeof hd);
memset(l, , sizeof l);
memset(r, 0x3f, sizeof r);
scanf("%d%d", &n, &m), t = n+m+, S = n+m+, T = n+m+, add(t,s,inf);
for(int i = ; i <= n; i++) scanf("%d", &x), add(S,i,x), add(s,T,x);
for(int i = ; i <= m; i++) scanf("%d", &x), add(S,t,x), add(i+n,T,x);
scanf("%d", &c);
while(c--) {
scanf("%d%d%s%d", &x, &y, op, &z);
if(!x && !y) {
for(int i = ; i <= n; i++)
for(int j = ; j <= m; j++)
upd(i,j);
} else if(!x) {
for(int i = ; i <= n; i++) upd(i,y);
} else if(!y) {
for(int i = ; i <= m; i++) upd(x,i);
} else upd(x,y);
}
if(fr) puts("");
fr = ;
for(int i = ; i <= n; i++)
for(int j = ; j <= m; j++) {
if(r[i][j] < l[i][j]) {puts("IMPOSSIBLE"); goto aa;}
add(i,j+n,r[i][j]-l[i][j]),add(S,j+n,l[i][j]),add(i,T,l[i][j]);
}
while(tel()) while(zng(S,inf));
for(int i = hd[S]; i; i = nxt[i]) if(f[i]) {puts("IMPOSSIBLE"); goto aa;}
for(int i = ; i <= n; i++)
for(int j = hd[i]; j; j = nxt[j])
if(to[j] > n && to[j] <= n+m) ans[i][to[j]-n] = f[j^];
for(int i = ; i <= n; i++)
for(int j = ; j <= m; j++)
printf("%d%c", ans[i][j]+l[i][j], " \n"[j==m]);
aa: ;
}
return ;
}