当多维数组的某一列时返回的是一个行向量
>>> X = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
>>> X[:, 1]
array([2, 6, 10]) % 这里是一个行
>>> X[:, 1].shape % X[:, 1] 的用法完全等同于一个行,而不是一个列,
(3, )
如果我索引多维数组的某一列时,返回的仍然是列的结构,一种正确的索引方式是:
>>>X[:, 1][:, np.newaxis]
array([[2],
[6],
[10]])
如果想实现第二列和第四列的拼接(层叠):
>>>X_sub = np.hstack([X[:, 1][:, np.newaxis], X[:, 3][:, np.newaxis]])
% hstack:horizontal stack,水平方向上的层叠
>>>X_sub
array([[2, 4]
[6, 8]
[10, 12]])
当然更为简单的方式还是使用切片:
>> X[:, [1, 3]]
array([[ 2, 4],
[ 6, 8],
[10, 12]])